CSE 431 Spring 2009
 Assignment \#3

Due: Friday, April 24, 2009
Reading assignment: Read Chapter 5 of Sipser's text. We will cover section 5.3 before we cover computation histories in section 5.1.

Problems:

1. Suppose that $A \subseteq\{\langle M\rangle \mid M$ is a decider TM $\}$ and that A is Turing-recognizable.

Prove that there is a decidable language D such that $D \neq L(M)$ for any M with $\langle M\rangle \in A$. (Hint: You may find it helpful to consider an enumerator for A.)
(In general it seems hard to tell if a TM is a decider but one might guess that there could be some easy-to-recognize special format for a restricted class of TMs such that (1) any TM in the format must be a decider, and (2) for every decider there is an equivalent TM in this format. The answer to this question rules this out.)
2. Let $L=\{\langle M, w\rangle \mid M$ attempts to move left while on the left end of its tape during its computation on input $w\}$. Prove that L is undecidable.
3. Let $R=\{\langle M, w\rangle \mid M$ attempts to move left at some step of its computation on input $w\}$. Prove that R is decidable.
4. For a string $w \in\{0,1\}^{*}$, let the l's-complement of w, \bar{w}, be the string obtained by replacing each 0 of w by a 1 and each 1 of w by a 0 .
Let $C=\left\{\langle M\rangle \mid M\right.$ is a TM with input alphabet $\{0,1\}$ such that, for every $w \in\{0,1\}^{*}$, M accepts w if and only if M accepts $\bar{w}\}$. Show that C is undecidable.
5. Show that A is Turing-recognizable if and only if $A \leq_{m} A_{T M}$.
6. Show that A is decidable if and only if $A \leq_{m} 0^{*} 1^{*}$.
7. (Extra credit) Let $\Gamma=\{0,1$, blank $\}$ be the tape alphabet for all TMs in this problem. Define the busy beaver function $B B: \mathbb{N} \rightarrow \mathbb{N}$ as follows: For each value of k, consider all k-state TMs that halt when started with a blank tape. Let $B B(k)$ be the maximum number of 1 s that remain on the tape among all of these machines. Show that $B B$ is not a computable function.

