Lecture 30

Review \& Wrapup

Computability Theory

See Midterm Review Slides

Real Computers are Finite

Unbounded "memory" is critical to most undecidability pfs Real computers are finite: n bits of state (registers, cache, RAM, HD, ...) $\Rightarrow \leq 2^{n}$ configs - it's a DFA!
"Does M accept w" is decidable: run M on w; if it runs more that 2^{n} steps, it's looping. (Recall LBA pfs.)
BUT:
2^{n} is astronomical: a modest laptop has $\mathrm{n}=100$'s of gigabits of state; \# atoms in the universe $\sim 2^{262}$

Are "real" computer problems undecidable?

Options:
100 G is so much >> 262 , let's say it's approximately unbounded \Rightarrow undecidable
Explore/quantify the "computational difficulty" of solving the (decidable) "bounded memory" problem
Ist is somewhat crude, but easy, and not crazy, given that we really don't have methods that are fundamentally better for l00Gb memories than for arbitrary algorithms
2nd is more refined but harder; goal of next few weeks is to develop theory supporting such aims

Time \& Space Complexity

Defined on TM's but largely model-independent
(I-tape, multi-tape, RAMs, ...)
Esp. if we focus on asymptotic complexity, up to polynomials E.g. P, PSPACE

For space, model-independence even extends to nondeterministic models

For time, this is a major open problem
E.g., does P = NP?

P

Many important problems are in P: solvable in deterministic polynomial time

Details are more the fodder of algorithms courses, but we've seen a few examples here, plus many other examples in other courses
Few problems not in P are routinely solved;
For those that are, practice is usually restricted to small instances, or we're forced to settle for approximate, suboptimal, or heuristic "solutions"
A major goal of complexity theory is to delineate the boundaries of what we can feasibly solve

NP

The tip-of-the-iceberg in terms of problems conjectured not to be in P, but a very important tip, because
a) they're very commonly encountered, probably because
b) they arise naturally from basic "search" and "optimization" questions.

Definition: poly time NTM
Equivalent views: poly time verifiable, "guess and check", "is there a..." - all useful

NP-completeness

Defn \& Properties of \leq_{p}

A is NP-hard: everything in NP reducible to A
A is NP-complete: NP-hard and in NP
"the hardest problems in NP"
"All alike under the skin"
Most known natural problems in NP are complete
\#I: 3CNF-SAT
Many others: Clique, VertexCover, HamPath, Circuit-SAT,...

Beyond NP

"Polynomial Hierarchy":
Quantified Boolean formulas with fixed number of alternations of \exists, \forall

Collapses if NP = co-NP
Important in helping recognize variants of NP problems PSPACE

Exponential Time
Double-Exponential Time

Complexity class relationships

$P \subseteq N P \cap$ co-NP $\subseteq N P \cup$ co-NP $\subseteq P S P A C E \subseteq$ ExpTime

NP \neq co-NP ?
All containments above proper ?

A taste of things we didn't get to

Resource-bounded Hierarchy Theorems:
If $t(n) \ll T(n)\left(e . g ., \lim _{n \rightarrow \infty} t(n) / T(n)=0\right)$, then $\operatorname{DSPACE}(\mathrm{t}(\mathrm{n})) \subsetneq \operatorname{DSPACE}(\mathrm{T}(\mathrm{n}))$
Similar for DTIME, (but fussier about "<<")

$$
\begin{aligned}
& \text { E.g.: } \operatorname{TIME}(n) \subsetneq \operatorname{TIME}\left(n^{2}\right) \subsetneq \operatorname{TIME}\left(n^{3}\right) \ldots \\
& \operatorname{P} \subseteq \operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(3^{n}\right) \subsetneq \ldots \operatorname{TIME}\left(2^{n^{2}}\right) \subsetneq \operatorname{TIME}\left(2^{2^{n}}\right)
\end{aligned}
$$

Method: diagonalization again
NSPACE is closed under complementation
Is there an s-t path in G ?
Is there no s-t path in G ?

Final Exam

Monday, 2:30
In this Classroom
Two pages of notes allowed; otherwise closed book.
Coverage: comprehensive
Sipser, Chapters 3, 4, 5; 7, 8.I-8.3
Lectures
Homework

Some bias (~60/40) towards topics since midterm

Thanks, and Good Luck!

