## Lecture 5

## The Acceptance Problem for TMs

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } T M \& w \in L(M)\}
$$

Theorem: $\mathrm{A}_{\text {TM }}$ is Turing recognizable
Pf: It is recognized by a TM $U$ that, on input $\langle M, w\rangle$, simulates $M$ on w step by step. $U$ accepts iff $M$ does.

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)
Note that U is a recognizer, not a decider.


## Cardinality

Two sets have equal cardinality if there is a bijection between them

A set is countable if it is finite or has the same cardinality as the natural numbers

## Examples:

$\Sigma^{*}$ is countable (think of strings as base- $|\Sigma|$ numerals)
Even natural numbers are countable: $f(n)=2 n$
The Rationals are countable


## More cardinality facts

If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ in an injective function (" $|-|$ ", but not necessarily "onto"), then

$$
|\mathrm{A}| \leq|\mathrm{B}|
$$

(Intuitive: $f$ is a bijection from $A$ to its range, which is a subset of $B$, and $B$ can't be smaller than a subset of itself.)

Theorem (Cantor-Schroeder-Bernstein):

$$
\text { If }|A| \leq|B| \text { and }|B| \leq|A| \text { then }|A|=|B|
$$

## The Reals are Uncountable

Suppose they were List them in order Define $X$ so that its $i^{\text {th }}$ digit $\neq \mathrm{i}^{\text {th }}$ digit of $\mathrm{i}^{\text {th }}$ real Then $X$ is not in the list Contradiction

|  | int | 1 | 2 | 3 | 3 | 5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0. | 0 | 0 | 0 | 0 | 0 |  |
| 2 | 3. | 1 | 4 | 1 | 5 | 9 |  |
| 3 | 0. | 3 | 3 | 3 | 3 | 3 |  |
| 4 | 0. | 5 | 0 | 0 | 0 | 0 |  |
| 5 | 2. | 7 | 1 | 8 | 2 | 8 |  |
| 6 | 41. | 9 | 9 | 9 | 9 | 9 |  |
|  | $\vdots$ |  |  |  |  |  |  |
|  | $\ddots$ |  |  |  |  |  |  |

A detail: avoid .000..., .9999... in X

| X | I. | 2 | 4 | I | 3 | 8 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Number of Languages in $\Sigma^{*}$ is Uncountable

Suppose they were
List them in order
Define $L$ so that $w_{i} \in L$ $\Leftrightarrow W_{i} \notin L_{i}$

Then $L$ is not in the list
Contradiction

|  | wi | $\mathrm{w}_{2}$ | W8 | $W_{4}$ | W5 | W6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | 0 | 0 | 0 | 0 | 0 | 0 |  |
| $L_{2}$ | 1 | 1 | 1 | 1 | 1 | 1 |  |
| $L_{3}$ | 0 | 1 | 0 | 1 | 0 | 1 |  |
| L. | 0 | 1 | 0 | 0 | 0 | 0 | $\cdots$ |
| Ls | 1 | 1 | 1 | 0 | 0 | 0 |  |
| L6 | 1 | 1 | 1 | 1 | 0 | 1 |  |


| L | I | 0 | I | I | I | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## "Most" languages are neither Turing recognizable nor Turing decidable

Pf:
"<>" maps TMs into $\Sigma^{*}$, a countable set, so the set of TMs, and hence of Turing recognizable languages is also countable;Turing decidable is a subset of Turing recognizable, so also countable. But by the previous result, the set of all languages is uncountable.

## A specific non-Turingrecognizable language

Let $M_{i}$ be the TM encoded by $w_{i}$, i.e.
$<\mathrm{M}_{\mathrm{i}}>=\mathrm{w}_{\mathrm{i}}$
( $M_{i}=$ some default machine, if $w_{i}$ is an illegal code.)
$\mathrm{i}, \mathrm{j}$ entry tells whether $M_{i}$ accepts $w_{i}$
Then D is not recognized by any $T M$

|  | $W_{1}$ | $w_{2}$ | $w_{3}$ | $w_{4}$ | $w_{5}$ | $w_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\langle M_{1}\right\rangle$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $\left\langle M_{2}\right\rangle$ | I | I | I | I | I | I |
| $\left\langle M_{3}\right\rangle$ | 0 | I | 0 | I | 0 | I |
| $\left\langle M_{4}\right\rangle$ | 0 | I | 0 | 0 | 0 | 0 |
| $\left\langle M_{5}\right\rangle$ | I | I | I | 0 | 0 | 0 |
| $\left\langle M_{6}\right\rangle$ | 0 | I | 0 | 0 | 0 | I |
|  | $\vdots$ |  |  |  |  |  |


| D | I | 0 | I | I | I | 0 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Theorem: The class of Turing recognizable languages is not closed under complementation.
Proof:
The complement of D , is Turing recognizable:
On input $w_{i}$, run $\left\langle M_{i}\right\rangle$ on $w_{i}\left(=\left\langle M_{i}\right\rangle\right)$; accept if it does. E.g. use a universal TM on input $\left\langle M_{i},\left\langle M_{i}\right\rangle>\right.$

Theorem: The class of Turing decidable languages is closed under complementation.

## Proof:

Flip qaccept, qreject

## Decidable $\underset{\nrightarrow}{\subsetneq}$ Recognizable



