Lecture 5

The Acceptance Problem for TMs

 $A_{TM} = \{ <M, w > | M \text{ is a TM } \& w \in L(M) \}$

Theorem: A_{TM} is Turing recognizable

Pf: It is recognized by a TM U that, on input $\langle M, w \rangle$, simulates M on w step by step. U accepts iff M does. \Box

U is called a Universal Turing Machine

(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

Cardinality

Two sets have equal cardinality if there is a bijection between them

A set is *countable* if it is finite or has the same cardinality as the natural numbers

Examples:

 Σ^* is countable (think of strings as base- $|\Sigma|$ numerals)

Even natural numbers are countable: f(n) = 2n

The Rationals are countable

More cardinality facts

If $f: A \rightarrow B$ in an injective function ("1-1", but not necessarily "onto"), then

 $|\mathsf{A}| \leq |\mathsf{B}|$

(Intuitive: f is a bijection from A to its range, which is a subset of B, and B can't be smaller than a subset of itself.)

Theorem (Cantor-Schroeder-Bernstein):

If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

The Reals are Uncountable

A detail: avoid .000..., .9999... in X

	int	l	2	3	3	5				
l	0.	0	0	0	0	0				
2	3.		4		5	9				
3	0.	3	3	3	3	3				
4	0.	5	0	0	0	0	•••			
5	2.	7		8	2	8				
6	4 1.	9	9	9	9	9				
	•••									
Х	١.	2	4	I	3	8	•••			

Number of Languages in Σ^* is Uncountable

- Suppose they were
- List them in order
- Then L is *not in the list* Contradiction

"Most" languages are neither Turing recognizable nor Turing decidable

Pf:

"< >" maps TMs into Σ^* , a countable set, so the set of TMs, and hence of Turing recognizable languages is also countable; Turing decidable is a subset of Turing recognizable, so also countable. But by the previous result, the set of all languages is *un*countable.

A specific non-Turingrecognizable language

Let M_i be the TM encoded by w_i , i.e. $\langle M_i \rangle = w_i$

 $(M_i = \text{some default machine, if} w_i \text{ is an illegal code.})$

i, j entry tells whether M_i accepts w_j

Then D is not recognized by any TM

	WI	W2	W3	W4	W5	W6			
<m_></m_>	0	0	0	0	0	0			
<m2></m2>									
<m3></m3>	0	-	0		0	-			
<m4></m4>	0		0	0	0	0	•		
<m<sub>5></m<sub>	I	Ι	Ι	0	0	0			
<m6></m6>	0	Ι	0	0	0				
	•••								
D	I	0	I	1	T	0	•••		

Theorem: The class of Turing recognizable languages is *not* closed under complementation.

Proof:

The *complement* of D, *is* Turing recognizable:

On input w_i , run $\langle M_i \rangle$ on w_i (= $\langle M_i \rangle$); accept if it does. E.g. use a universal TM on input $\langle M_i, \langle M_i \rangle \rangle$

Theorem: The class of Turing decidable languages is closed under complementation.

Proof:

Flip qaccept, qreject

Decidable \subseteq_{\neq} Recognizable

