Lecture 6

The Acceptance Problem for TMs

 $A_{TM} = \{ <M, w > | M \text{ is a TM } \& w \in L(M) \}$

Theorem: A_{TM} is Turing recognizable

Pf: It is recognized by a TM U that, on input $\langle M, w \rangle$, simulates M on w step by step. U accepts iff M does. \Box

U is called a Universal Turing Machine

(Ancestor of the stored-program computer)

Note that U is a recognizer, not a decider.

ATM is Undecidable

 $A_{TM} = \{ <M, w > | M \text{ is a TM } \& w \in L(M) \}$

Suppose it's decidable, say by TM H. Build a new TM D:

"on input <M> (a TM), run H on <M,<M>>; when it halts, halt & do the opposite, i.e. accept if H rejects and vice versa"

D accepts <M> iff H rejects <M,<M>> (by construction) iff M rejects <M> (H recognizes A_{TM})

D accepts <D> iff D rejects <D> (special case)

Contradiction!

Decidable \subseteq_{\neq} Recognizable

$Decidable = Rec \cap co-Rec$

L decidable iff both L & L^c are recognizable

Pf:

(⇐) on any given input, dovetail
a recognizer for L with one for
L^c; one or the other must halt
& accept, so you can halt &
accept/reject appropriately.

(⇒): from last lecture, decidable languages are closed under complement (flip acc/rej)

Reduction

"A is reducible to B" means I could solve A *if* I had a subroutine for B

Ex:

Finding the max element in a list is reducible to sorting pf: sort the list in increasing order, take the last element (A big hammer for a small problem, but never mind...)

The Halting Problem

HALT_{TM} = { < M,W> | TM M halts on input w }

Theorem: The halting problem is undecidable

Proof:

 $A = A_{TM}$, $B = HALT_{TM}$ Suppose I can reduce A to B. We already know A is undecidable, so must be that B is, too.

Suppose TM R decides HALT_{TM}. Consider S:

On input <M,w>, run R on it. If it rejects, halt & reject; if it accepts, run M on w; accept/reject as it does.

Then S decides A_{TM} , which is impossible. R can't exist.