Lecture 6

The Acceptance Problem for TMs

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } T M \& w \in L(M)\}
$$

Theorem: $\mathrm{A}_{\text {TM }}$ is Turing recognizable
Pf: It is recognized by a TM U that, on input $\langle M, w\rangle$, simulates M on w step by step. U accepts iff M does.

U is called a Universal Turing Machine
(Ancestor of the stored-program computer)
Note that U is a recognizer, not a decider.

Atm is Undecidable

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a } T M \& w \in L(M)\}
$$

Suppose it's decidable, say by TM H. Build a new TM D:
"on input <M> (a TM), run H on <M,<M>>; when it halts, halt \& do the opposite, i.e. accept if H rejects and vice versa"
D accepts $<M>$ iff H rejects $<M,<M \gg$ (by construction) iff M rejects <M>

D accepts <D> iff D rejects <D>
(special case)
Contradiction!

A st ${ }^{1 \%} \mathrm{c}$ non-Turing-

be language

$$
\& \quad .
$$

i, j (which ${ }_{\text {not }}$ nether Mi_{i} a w_{i}
Then L_{D} is not recognized by any $T M$

LD_{D}	I	0	I	I	I	0	\ldots

Decidable $\underset{\nrightarrow}{\subsetneq}$ Recognizable

Decidable $=$ Rec \cap co-Rec

L decidable iff both L

\& Lc are recognizable

Pf:

(\Leftarrow) on any given input, dovetail a recognizer for L with one for L^{c}; one or the other must halt \& accept, so you can halt \& accept/reject appropriately.
(\Rightarrow) : from last lecture, decidable languages are closed under complement (flip acc/rej)

Reduction

"A is reducible to B " means I could solve A if I had a subroutine for B

Ex:
Finding the max element in a list is reducible to sorting pf : sort the list in increasing order, take the last element (A big hammer for a small problem, but never mind...)

The Halting Problem

$$
\left.\operatorname{HALT}_{T M}=\{<M, W\rangle \mid T M M \text { halts on input } w\right\}
$$

Theorem:The halting problem is undecidable Proof:
$A=A_{T м}, B=H_{A L T}^{T m}$ Suppose I can reduce A to B. We already know A is undecidable, so must be that B is, too.

Suppose TM R decides HALTtm. Consider S:
On input <M,w>, run R on it. If it rejects, halt \& reject; if it accepts, run M on w; accept/reject as it does.

Then S decides $A_{\text {tm, }}$ which is impossible. R can't exist.

