
Lecture 7



Reduction

“A is reducible to B” means I could solve A if I had a 
subroutine for B

Ex:

Finding the max element in a list is reducible to sorting

pf: sort the list in increasing order, take the last element

(A big hammer for a small problem, but never mind...)



The Halting Problem

HALTTM = { <M,w> | TM M halts on input w }

Theorem: The halting problem is undecidable

Proof:

A = ATM, B = HALTTM  Suppose I can reduce A to B.  We 
already know A is undecidable, so must be that B is, too.

Suppose TM R decides HALTTM.  Consider S: 

On input <M,w>, run R on it.  If it rejects, halt & reject; if it 
accepts, run M on w; accept/reject as it does.

Then S decides ATM, which is impossible.  R can’t exist.



Halt?

M,w

Simulate

acc

accrej

rej

R:S:
Yes



Another Way

Rather than running R on <M,w>, and manipulating that 
answer, manipulate the input to build a new M’ so that 
R’s answer about <M’,w> directly answers the question 
of interest.

Specifically, build M’ as a clone of M, but modified so 
that if M halts-and-rejects, M’ instead rejects by looping.

Then halt/not-halt for M’ == accept/reject for M

Again, this reduces ATM to HALTTM



Halt?

M,w

accrej

R:

S’:

Yes

Build M’
Pass <M’,w> to R

M’: same as 
M, but qreject 
replaced by a 
loop



Reduction

Notation (not in book, but common): 

A ≤T B means “A is Turing Reducible to B”

I.e., if I had a TM deciding B, I could use it as a 
subroutine to solve A

Facts:

A ≤T B & B decidable implies A decidable         (definition)

A ≤T B & A undecidable implies B undecidable (contrapositive)

A ≤T B & B ≤T C implies A ≤T C



EMPTYTM = { <M> |  M is a TM s.t. L(M) = ∅ }

EMPTYTM is undecidable



REGULARTM is undecidable

REGULARTM = { <M> |  M is a TM s.t. L(M) is regular }


