Lecture 8

Announcements

re HW#1, Aeron says "If I made a comment, even if I didn't take off points *this* time, people should pay attention because I will take off points for the same mistake in the future..."

EQTM is undecidable

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_i \text{ are TMs s.t. } L(M_1) = L(M_2) \}$

EQTM is undecidable

 $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_i \text{ are TMs s.t. } L(M_1) = L(M_2) \}$

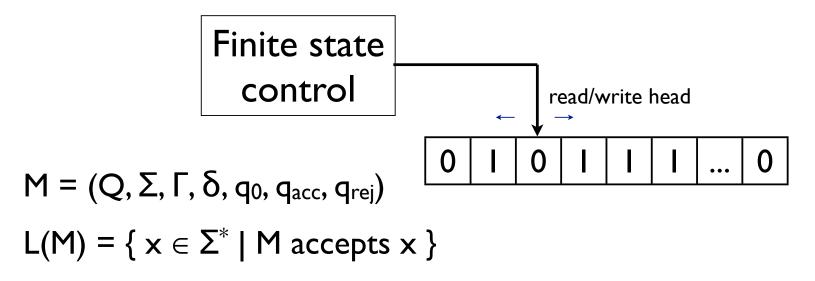
Pf: Will show EMPTY_{TM} $\leq_{T} EQ_{TM}$

Suppose EQ_{TM} were decidable. Let M_{\emptyset} be a TM that accepts nothing, say one whose start state = q_{reject} . Consider the TM E that, given <M>, builds <M, M_{\emptyset} >, then calls the hypothetical subroutine for EQ_{TM} on it, accepting/rejecting as it does. Now, <M, M_{\emptyset} > \in EQ_{TM} if and only if M accepts \emptyset , so, E decides whether M \in EMPTY_{TM}, which we know to be impossible. Contradiction

Linear Bounded Automata

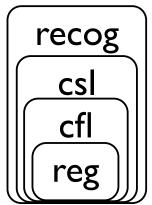
Like a (I-tape) TM, but tape only long enough for input

(head stays put if try to move off either end of tape)



An Aside: The Chomsky Hierarchy

TM = phrase structure grammars $\alpha A\beta \rightarrow \alpha \gamma \beta$ LBA = context-sensitive grammars $\alpha A\beta \rightarrow \alpha \gamma \beta$, $\gamma \neq \epsilon$ PDA = context-free grammars $A \rightarrow \gamma$ DFA = regular grammars $A \rightarrow abcB$



ALBA is decidable

 $A_{LBA} = \{ <\!M, w \! > \mid M \text{ is an LBA and } w \in L(M) \}$

Key fact: the number of distinct configurations of an LBA on any input of length n is *bounded*, namely

 $\leq n |Q| |\Gamma|^n$

If M runs for more than that many steps, it is looping

Decision procedure for A_{LBA}:

Simulate M on w and count steps; if it halts and accepts/rejects, do the same; if it exceeds that time bound, halt and reject.

EMPTY_{LBA} is undecidable

Why is this hard, when the acceptance problem is not?

Loosely, it's about infinitely many inputs, not just one Can we exploit that, say to decide A_{TM} ? An idea. An LBA is a TM, so can it simulate M on w? Only if M doesn't use too much tape.

What about simulating M on w############?

Given M, build LBA M' that, on input w # # # # #... #, simulates M on w, treating # as a blank. If M halts, do the same. if M tries to move off the right end of the tape, reject.

 $L(M') = \{ w \#^k \mid M \text{ accepts } w \text{ using } \leq | w \#^k | \text{ tape cells } \}$

Key point:

if M rejects w, M' rejects w#^k for all k, $\therefore L(M') = \emptyset$

if M accepts w, some k will be big enough, \therefore L(M') $\neq \emptyset$