Lecture 10

EMPTY_{LBA} is undecidable

An alternate proof, using a new technique –

Computation histories

Computation Histories

A string in $\Gamma^* Q \Gamma^*$ (trailing blanks optional)

Accepting (Rejecting) *History*: $C_1, C_2, ..., C_n$ s.t. I. C_1 is M's initial configuration 2. C_n is an accepting (rejecting, resp.) config, and 3. For each $I \le i \le n$, C_i moves to C_{i+1} in one step

Checking Histories

...

Many proofs require checking that a string, say $\# C_1 \# C_2 \# ... \# C_n \#$ in $(\{\#\} \cup Q \cup \Gamma)^*$ is/is not an accepting history: I. C_1 is M's initial configuration: $C_1 \in q_0 \Sigma^*$ 2. C_n is an accepting config: it contains q_{accept} 3. For each $I \leq i < n$, C_i moves to C_{i+1} in one step

" C_i moves to C_{i+1} in one step of M"

 $#a_1a_2...a_kpa_{k+1}a_{k+2}...a_n#b_1b_2...b_jqb_{j+1}b_{j+2}...b_m#$

Aside: one reason TM's have been so useful for computation theory is that they make questions like this very simple; "config" and "move" are much messier for "real" computers.

$A_{TM} \leq_T EMPTY_{LBA}$

Given $\langle M, w \rangle$, build an LBA L_{M,w} that recognizes

$$AH_{M,w} = \{ x \mid x = \# C_1 \# C_2 \# ... \# C_n \#, \text{ an Accepting} \\ computation History of M on w \}$$

Then pass $\langle L_{M,w} \rangle$ to the hypothetical subr for EMPTY_{LBA}

Specifically, $L_{M,w}$ operates by checking that:

- I. Its input is of the form $\# C_1 \# C_2 \# ... \# C_n \#$
- 2. C_1 is the initial config of M on w
- $3.\,C_n$ has M's accept state, and
- 4. For each $1 \le i \le n$, C_i moves to C_{i+1} in one step of M (ziz-zag across adjacent pairs, checking as on prev slide)

Correctness

 $L(L_{M,w}) = AH_{M,w} = \{ x \mid x = \# C_1 \# C_2 \# ... \# C_n \#, an accepting computation history of M on w \}$

Empty if M rejects w - no such x Non-empty if M accepts w - there is one such history

So, "M accepts w" is equivalent to (non-) emptyness of AH_{M,w} $\therefore A_{TM} \leq_T EMPTY_{LBA}$ QED

Notes

Similar ideas can be used to give reductions like

 $A_{\mathsf{TM}} \leq_{\mathsf{T}} \mathsf{EMPTY}_{\mathsf{X}}$

for any machine or language class X expressive enough that we can easily, given M & w, represent $AH_{M,w}$ in X

A nice thing about histories is that they are so transparent that this is easy, even for more restricted models than LBA's

(One example in homework; another below)

ALLCFL is Undecidable

 $ALL_{CFL} = \{ \langle G \rangle | G \text{ is a CFG with } L(G) = \Sigma^* \}$

A variant on the above proof, but instead of using $AH_{M,w}$, (the set of accepting histories of M on w), we use its *complement*:

NH_{M,w} = { x | x is *not* an accepting computation history^{*} of M on w }

* and change the representation of a history so that alternate configs are reversed:

 $\# C_1 \# C_2^R \# C_3 \# C_4^R \# ... \# C_n^{(R?)} \#$

$A_{TM} \leq_T ALL_{CFL}$

Given M, w, build a PDA P that, on input x, accepts if x does *not* start and end with #; otherwise, let

 $\mathbf{x} = \# \mathbf{C}_1 \ \# \mathbf{C}_2^{\mathsf{R}} \ \# \mathbf{C}_3 \ \# \mathbf{C}_4^{\mathsf{R}} \ \# ... \ \# \mathbf{C}_n^{(\mathsf{R}?)} \ \#$

and nondeterministically do one of:

- I. accept if C_1 is not M's initial config on w
- 2. accept if C_n is not accepting, or

3. nondeterministically pick i and verify that C_i does not

yield C_{i+1} in one step. (Push Ist; pop & compare to 2nd, with the necessary changes near the head.)

From P, build equiv CFG G; ask the hypothetical ALL_{CFL} subrif G generates all of ({#} $\cup Q \cup \Gamma$)*

Computable Functions

In addition to language recognition, we are also interested in computable functions.

Defn: a function $f: \Sigma^* \to \Sigma^*$ is *computable* if \exists a TM M s.t. given any input $w \in \Sigma^*$, M <u>halts</u> with just f(w) on its tape. (Note: domain(f) = Σ^* ; crucial that M always halt, else value undefined.)

Ex I: $f(n) = n^2$ is computable

Ex 2: g($\langle M, w \rangle$) = $\langle L_{M,w} \rangle$ (as in the EMPTY_{LBA} pf) is computable

Ex 2: $h(\langle M, w \rangle) = "I \text{ if } M \text{ acc } w \text{ else } 0" \text{ is } uncomputable}$ (Why? Reduce A_{TM} to it.)

Reducibility

"A reducible to B" means could solve A *if* had subr for B Can use B in arbitrary ways-call it repeatedly, use its answers to form new calls, etc. E.g.,

WHACKY $\leq_T A_{TM}$

where WHACKY = { $<M, w_1, w_2, ..., w_n > | M accepts$

 $a_1 \cdots a_n$, where $a_i = 0$ if M rejects w_i , I if accepts w_i }

BUT in "practice," *reductions rarely exploit this generality* and a more refined version is better for some purposes

Reduction

Notation (not in book, but common):

 $A \leq_T B$ means "A is Turing Reducible to B"

I.e., if I had a TM deciding B, I could use it as a subroutine to solve A

Facts:

 $A \leq_T B \& B \text{ decidable implies } A \text{ decidable}$ (definition)

 $A \leq_T B \& A$ undecidable implies B undecidable (contrapositive)

 $A \leq_T B \& B \leq_T C$ implies $A \leq_T C$

Mapping Reducibility

Defn: A is *mapping reducible* to B (A \leq_m B) if there is computable function f such that w \in A \Leftrightarrow f(w) \in B

A special case of \leq_T :

Call subr only once; its answer is *the* answer Facts:

 $A \leq_m B \& B \text{ decidable} \qquad \Rightarrow A \text{ is too}$

 $A \leq_m B \& A undecidable$

 \Rightarrow B is too

 $\mathsf{A} \leq_{\mathsf{m}} \mathsf{B} \And \mathsf{B} \leq_{\mathsf{m}} \mathsf{C} \Rightarrow \mathsf{A} \leq_{\mathsf{m}} \mathsf{C}$

Mapping Reducibility

Defn: A is *mapping reducible* to B (A \leq_m B) if there is computable function f such that w \in A \Leftrightarrow f(w) \in B

A special case of \leq_T :

Call subr only once; its answer is the answer Facts:

 $A \leq_m B \& B$ decidable (recognizable) $\Rightarrow A$ is too

 $A \leq_m B \& A undecidable (unrecognizable) \Rightarrow B is too$

 $\mathsf{A} \leq_{\mathsf{m}} \mathsf{B} \And \mathsf{B} \leq_{\mathsf{m}} \mathsf{C} \Rightarrow \mathsf{A} \leq_{\mathsf{m}} \mathsf{C}$

Most reductions we've seen were actually \leq_m reductions.