Lecture |0

EMPTYga is undecidable

An alternate proof, using a new technique —

Computation histories

Computation Histories

Configuration:
state, head, tape 9 ‘lhead
Encoding Configs: 0 IE 0 HI |

01qO01I I
A string in [* Q [* (trailing blanks optional)

Accepting (Rejecting) History: Ci, Cy, ..., Ch s.t.
|. C, is M’s initial configuration
2. C, is an accepting (rejecting, resp.) config, and
3.For each | < i <n,C moves to Ci+| in one step

Checking Histories

Many proofs require checking that a string, say
HCIH#C#H#. .H#CH# in({# uQul)*
is/is not an accepting history:
|. C,is M’s initial configuration:
Cieq2
2. Cy is an accepting config:
It contains Qaccept

3.For each | < i <n,C moves to Ci+| in one step

“Ci moves to Ci+| in one step of M”

#aiaz. . ak+2 . . . an#bibs. . .j+z e o o on#

No change:
ai = bi e[

p, 9 € Q,
J =k 1
m

n=

(=

Except for adjustments, all near
the head, reflecting the move:
6(p, ak+|) = (q, b|<+|, L/R),
j = k+1 if R else max(k-1,0)
and injecting blanks on the right
as needed:
if n = k, then “ai+)”” = blank
m = n+l, ...

Aside: one reason TM’s have been so useful for computation theory is that they make
questions like this very simple; “config” and “move” are much messier for “real” computers.

Atm <1 EMPTYBA

Given (M, w), build an LBA Lm, that recognizes

AHMmw = {x | x=# C/# Co# ...# C,#, an Accepting
computation History of M on w }

Then pass (Lmw’ to the hypothetical subr for EMPTY ga

Specifically, Lmw operates by checking that:
| Its input is of the form # C# Co#f . # C #
2. C, is the initial config of M on w
3. Ch has M’s accept state, and

4.For each | < i <n,Ci moves to Ci+| in one step of M
(ziz-zag across adjacent pairs, checking as on prev slide)

Correctness

L(LMw) =AHMw = {x | x=# CI# Co# .. # C, #, an
accepting computation history of M on w }

Empty if M rejects w — no such x
Non-empty if M accepts w — there is one such history

So,”“M accepts w’ is equivalent to (onyemptyness of AHmw

- ATM <7 EMPTY A QED

Notes

Similar ideas can be used to give reductions like
Atm <TEMPTYx

for any machine or language class X expressive enough that
we can easily, given M & w, represent AHMw in X

A nice thing about histories is that they are so transparent
that this is easy, even for more restricted models than LBA’s

(One example in homework; another below)

ALLcr is Undecidable

ALLcr = { <G> | G is a CFG with L(G) = =%}

A variant on the above proof, but instead of using

AHwmw, (the set of accepting histories of M on w), we
use its complement:
NHMmw = { x | x is not an accepting computation
history” of M on w }

*and change the representation of a history so that alternate
configs are reversed:

HCIHCRH#CGHCRAH#CRI#

Atm <TALLCFRL

Given M, w, build a PDA P that, on input X, accepts if x does
not start and end with #; otherwise, let

X=HC #CRE#GCGH#CRA.#C,R)#

and nondeterministically do one of:
|.accept if C, is not M’s initial config on w
2. accept if C, is not accepting, or
3. nondeterministically pick i and verify that C; does not

yield Ci+| in one step. (Push I pop & compare to 2", with the
necessary changes near the head.)

From P, build equiv CFG G; ask the hypothetical ALLcrL subr
if G generates all of ({#} u Q u IN)*

Computable Functions

In addition to language recognition, we are also
interested in computable functions.

Defn: a function f: 2 = X" is computable if 3aTM M s.t.

given any input w € 2, M halts with just f(w) on its tape.
(Note: domain(f) = 27; crucial that M always halt, else value undefined.)

Ex 1:f(n) = n? is computable
Ex 2: g(<M,w)) = (LMmw, (as in the EMPTYga pf) is computable

Ex 2: h((M,w)) =“I if M acc w else 0” is uncomputable
(Why? Reduce Atm to it.)

Reducibility

“A reducible to B” means could solve A if had subr for B

Can use B in arbitrary ways—call it repeatedly, use its
answers to form new calls, etc. E.g,,

WHACKY <1 ATM
where WHACKY = { <M,w|, wy, ...,.wn> | M accepts
a|---an, Where a; = 0 if M rejects w;, | if accepts wi }

BUT in “practice,’ reductions rarely exploit this generality
and a more refined version is better for some purposes

Reduction

Notation (not in book, but common):
A <71 B means “A is Turing Reducible to B”

l.e., if | had a TM deciding B, | could use it as a
subroutine to solve A

Facts:
A <1 B & B decidable implies A decidable (definition)
A <1 B & A undecidable implies B undecidable (contrapositive)

A <tB&B <7 CimpliesA <7 C

Mapping Reducibility

Defn: A is mapping reducible to B (A <m B) if there is
computable function f such that w e A & f(w) € B

A special case of <t
Call subr only once;its answer is the answer

Facts:
A < B & B decidable = A is too

A < B & A undecidable = B is too
A<nB&B <,C=A=<,C

Mapping Reducibility

Defn: A is mapping reducible to B (A <m B) if there is
computable function f such that w e A & f(w) € B

A special case of <t
Call subr only once;its answer is the answer

Facts:
A <m B & B decidable (recognizable) = A is too

A <m B & A undecidable (unrecognizable) = B is too
A<nB&B=<,C=2A=<,C

Most reductions we’ve seen were actually <, reductions.

