
Lecture 10

EMPTYLBA is undecidable

An alternate proof, using a new technique –

Computation histories

Computation Histories

q

0 1 0 1 1 ...

head

Configuration:
state, head, tape

Encoding Configs:
0 1 q 0 1 1
A string in Γ* Q Γ* (trailing blanks optional)

Accepting (Rejecting) History: C1, C2, ..., Cn s.t.
1. C1 is M’s initial configuration
2. Cn is an accepting (rejecting, resp.) config, and
3. For each 1 ≤ i < n, Ci moves to Ci+1 in one step

Checking Histories

Many proofs require checking that a string, say
C1 # C2 # ... # Cn # in ({#} ∪ Q ∪ Γ)*

is/is not an accepting history:
1. C1 is M’s initial configuration:

C1 ∈ q0 Σ*

2. Cn is an accepting config:
it contains qaccept

3. For each 1 ≤ i < n, Ci moves to Ci+1 in one step
...

#a1a2...akpak+1ak+2...an#b1b2...bjqbj+1bj+2...bm#

“Ci moves to Ci+1 in one step of M”

Except for adjustments, all near
the head, reflecting the move:
 δ(p, ak+1) = (q, bk+1, L/R),
 j = k+1 if R else max(k-1,0)
and injecting blanks on the right
as needed:
 if n = k, then “ak+1” = blank
 m = n+1, ...

No change:

ai = bi ∈ Γ
p, q ∈ Q,

j = k ± 1
n = m

Aside: one reason TM’s have been so useful for computation theory is that they make
questions like this very simple; “config” and “move” are much messier for “real” computers.

 ATM ≤T EMPTYLBA

Given ⟨M, w⟩, build an LBA LM,w that recognizes

AHM,w = { x | x = # C1 # C2 # ... # Cn #, an Accepting
computation History of M on w }

Then pass ⟨LM,w⟩ to the hypothetical subr for EMPTYLBA

Specifically, LM,w operates by checking that:
1. Its input is of the form # C1 # C2 # ... # Cn #
2. C1 is the initial config of M on w
3. Cn has M’s accept state, and
4. For each 1 ≤ i < n, Ci moves to Ci+1 in one step of M

(ziz-zag across adjacent pairs, checking as on prev slide)

Correctness

L(LM,w) = AHM,w = { x | x = # C1 # C2 # ... # Cn #, an
accepting computation history of M on w }

 Empty if M rejects w – no such x
Non-empty if M accepts w – there is one such history

So, “M accepts w” is equivalent to (non-)emptyness of AHM,w

∴ ATM ≤T EMPTYLBA QED

Notes

Similar ideas can be used to give reductions like

ATM ≤T EMPTYX

for any machine or language class X expressive enough that
we can easily, given M & w, represent AHM,w in X

A nice thing about histories is that they are so transparent
that this is easy, even for more restricted models than LBA’s

(One example in homework; another below)

ALLCFL is Undecidable

ALLCFL = { <G> | G is a CFG with L(G) = Σ* }

A variant on the above proof, but instead of using
AHM,w, (the set of accepting histories of M on w), we
use its complement:

 NHM,w = { x | x is not an accepting computation
history* of M on w }

* and change the representation of a history so that alternate
configs are reversed:

C1 # C2R # C3 # C4R #... # Cn(R?)

ATM ≤T ALLCFL

Given M, w, build a PDA P that, on input x, accepts if x does
not start and end with #; otherwise, let

x = # C1 # C2R # C3 # C4R #... # Cn(R?) #

and nondeterministically do one of:
1. accept if C1 is not M’s initial config on w
2. accept if Cn is not accepting, or
3. nondeterministically pick i and verify that Ci does not
yield Ci+1 in one step. (Push 1st; pop & compare to 2nd, with the
necessary changes near the head.)

From P, build equiv CFG G; ask the hypothetical ALLCFL subr
if G generates all of ({#} ∪ Q ∪ Γ)*

Computable Functions

In addition to language recognition, we are also
interested in computable functions.

Defn: a function f: Σ* → Σ* is computable if ∃ a TM M s.t.
given any input w ∈ Σ*, M halts with just f(w) on its tape.
(Note: domain(f) = Σ*; crucial that M always halt, else value undefined.)

Ex 1: f(n) = n2 is computable

Ex 2: g(⟨M,w⟩) = ⟨LM,w⟩ (as in the EMPTYLBA pf) is computable

Ex 2: h(⟨M,w⟩) = “1 if M acc w else 0” is uncomputable
(Why? Reduce ATM to it.)

Reducibility

“A reducible to B” means could solve A if had subr for B

Can use B in arbitrary ways–call it repeatedly, use its
answers to form new calls, etc. E.g.,

WHACKY ≤T ATM

where WHACKY = { <M,w1, w2, ...,wn> | M accepts

a1…an, where ai = 0 if M rejects wi, 1 if accepts wi }

BUT in “practice,” reductions rarely exploit this generality
and a more refined version is better for some purposes

Reduction

Notation (not in book, but common):

A ≤T B means “A is Turing Reducible to B”

I.e., if I had a TM deciding B, I could use it as a
subroutine to solve A

Facts:

A ≤T B & B decidable implies A decidable (definition)

A ≤T B & A undecidable implies B undecidable (contrapositive)

A ≤T B & B ≤T C implies A ≤T C

Mapping Reducibility

Defn: A is mapping reducible to B (A ≤m B) if there is
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T :
Call subr only once; its answer is the answer

Facts:
A ≤m B & B decidable ⇒ A is too

A ≤m B & A undecidable ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Mapping Reducibility

Defn: A is mapping reducible to B (A ≤m B) if there is
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T :
Call subr only once; its answer is the answer

Facts:
A ≤m B & B decidable (recognizable) ⇒ A is too

A ≤m B & A undecidable (unrecognizable) ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C

Most reductions we’ve seen were actually ≤m reductions.

