Lecture 11

Mapping Reducibility

Defn: A is *mapping reducible* to B (A \leq_m B) if there is computable function f such that w \in A \Leftrightarrow f(w) \in B

A special case of \leq_T :

Call subr only once; its answer is *the* answer Facts:

 $A \leq_m B \& B$ decidable $\Rightarrow A$ is too $A \leq_m B \& A$ undecidable $\Rightarrow B$ is too

 $A \leq_m B \And B \leq_m C \Rightarrow A \leq_m C$

Mapping Reducibility

Defn: A is *mapping reducible* to B (A \leq_m B) if there is computable function f such that w \in A \Leftrightarrow f(w) \in B

A special case of \leq_T :

Call subr only once; its answer is *the* answer Theorem:

 $A \leq_m B \& B$ decidable (recognizable) $\Rightarrow A$ is too

 $A \leq_m B \& A undecidable (unrecognizable) \Rightarrow B is too$

 $\mathsf{A} \leq_{\mathsf{m}} \mathsf{B} \And \mathsf{B} \leq_{\mathsf{m}} \mathsf{C} \Rightarrow \mathsf{A} \leq_{\mathsf{m}} \mathsf{C}$

Most reductions we've seen were actually \leq_m reductions.

 $w \in A \Leftrightarrow f(w) \in B$

Mapping Reducibility

Defn: A is *mapping reducible* to B (A \leq_m B) if there is computable function f such that $w \in A \Leftrightarrow f(w) \in B$

Theorem:

 $A \leq_m B \& B$ decidable (recognizable) $\Rightarrow A$ is too

pf: To decide (recognize) w in A compute f(w), then use decider (recognizer, resp) for B on f(w).

 $A \leq_m B \& A undecidable (unrecognizable) \Rightarrow B is too$

pf: Contrapositive

 $\mathsf{A} \leq_{\mathsf{m}} \mathsf{B} \And \mathsf{B} \leq_{\mathsf{m}} \mathsf{C} \Rightarrow \mathsf{A} \leq_{\mathsf{m}} \mathsf{C}$

pf: If f for A \rightarrow B, g for B \rightarrow C; then w \in A \Leftrightarrow g(f(w)) \in C

f(<M,w>) = <M',w>

Other Examples of \leq_m

 $\begin{array}{ll} A_{TM} \leq_m \text{REGULAR}_{TM} & f(<M,w>) = <M_2>\\ & \text{Build } M_2 \text{ so } L(M_2) = \Sigma^* / \left\{ \begin{array}{l} 0^n 1^n \right\}, \text{ as } M \text{ accept/rejects } w\\ & \text{EMPTY}_{TM} \leq_m \text{EQ}_{TM} & f(<M>) = <M, M_{\text{reject}}>\\ & L(M_{\text{reject}}) = \varnothing, \text{ so equiv to } M \text{ iff } L(M) = \varnothing\\ & A_{TM} \leq_m \text{MPCP} & \\ & \text{MPCP} \leq_m \text{PCP} & \end{array} \right\} 5.2$

 $\begin{array}{ll} A_{TM} \leq_m EMPTY_{TM} & f(<M,w>) = <M_1>\\ & \text{Build } M_1 \text{ so } L(M_1) = \{w\} \ / \ \varnothing, \text{ as } M \text{ accept/rejects } w \end{array}$