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Real Computers are Finite	



Unbounded “memory” is critical to most undecidability pfs	



Real computers are finite: n bits of state (registers, cache, 
RAM, HD, …) ⇒ ≤ 2n configs – it’s a DFA!	



“Does M accept w” is decidable: run M on w; if it runs more 
that 2n steps, it’s looping. (Recall LBA pfs.)	



BUT:	


2n is astronomical: a modest laptop has n = 100’s of gigabits 
of state; # atoms in the universe ~ 2262 	
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Are “real” computer ���
problems undecidable?	



Options:	


100 G is so much >> 262, let’s say it’s approximately unbounded ⇒ 
undecidable	


Explore/quantify the “computational difficulty” of solving the 
(decidable) “bounded memory” problem	



1st is somewhat crude, but easy, and not crazy, given that we 
really don’t have methods that are fundamentally better for 
100Gb memories than for arbitrary algorithms	



2nd is more refined but harder; goal of next few weeks is to 
develop theory supporting such aims 	
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Measuring “Compute Time” 	



TM: simple, just count steps	



Defn: If M is a TM deciding L, the time complexity of M is the 
function T(n) such that T(n) is the max number of steps 
taken by M on any input w ∈ Σ* of length n.  	



Why as a function of n?  Mainly to smooth and summarize 	



Loosely, the time complexity of L is the least such T over all M 
deciding L.	



(I say “loosely” because it may be that no one M is fastest on all inputs, 
but nevertheless we may be able to bound it.)	
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Example: L = { anbn | n ≥ 0 }���
(on a One-Tape TM)	



A simple algorithm (zig-zag, cross off letters): T(n) = ~n2	



Somewhat trickier: cross of  5 letters at a time: T(n) = ~n2/5	


A more complex algorithm: 	



   On a “two-track” tape, drag along a binary counter: T(n) = ~n log2n	



Slightly more work:	


   As above, but a decimal counter: T(n) = ~n log10n	



More work still:	


   As above, but use lots of states to count off 1st ten million a’s & b’s:	


   T(n) = ~ if (n <107) then n else n log10n	



One conclusion: 	


Focus on growth rate, not const or small n.  I.e., big-O	
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Complexity Classes	



Defn:	



TIME(T(n)) = the set of languages decidable by single-tape 
TMs in time O(T(n))	



E.g. { anbn | n ≥ 0 } ∈ TIME(n log n)	



6	





Example: L = { anbn | n ≥ 0 }���
(on a Two-Tape TM)	



Counter on tape 2; +1 for every a; -1 for every b	



Time: O(n) – faster than best 1-tape TM for L	



(Analysis is a bit subtle.  “+1/-1” take log n steps in worst 
case, but “carries/borrows” usually don’t propagate very far.  
Can prove amortized cost of +1/-1 is only O(1) per 
operation.)	



One Conclusion: “Time” is somewhat technology-sensitive	



(In fact, gap between 1 tape and 2 is quadratic: {ww|w ∈ Σ*})	
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“Tapes are Lame”	



Obviously, “real” computers have essentially constant-time 
access to any bit of memory, not sequential access as on a 
tape	


Fast “random access” will allow faster algorithms for many 
problems, so time on a TM may seem a poor surrogate for 
time on real computers	



How poor?	
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A Model of a “Real Computer”	



“Random Access Machines” (RAMs)	



Memory is an array	


Unit time access to any word	



Basic, unit time ops like +, -, *, /, test-if-zero,…	


Programs	



For comparison to TMs, perhaps have read-only “input tape” 
or other string-oriented input convention and special 
“accept/reject” operations. Program typically not in memory 
(but could be)	
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TM-time(T) ⊆ RAM-time(T) ���
RAM-time(T) ⊆ TM-time(T3)	



Proof: look at your homework #1 and see how long your 
simulations took.	



TM by RAM is quick	



RAM by TM is slower, but cubic is conservative.  In time T, 
the RAM can touch at most T memory words, each word 
holds at most T bits, it takes time at most T2 to slog through 
tape to fetch/store a word, etc. 	
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A Church-Turing thesis for “time”?	



Church-Turing thesis: all “reasonable” models of 
computation are equivalent – i.e. all give the same set of 
decidable problems	



“Extended” Church Turing thesis: All “reasonable” models of 
computation are equivalent up to a polynomial difference in 
time complexity	



E.g. from above, this is true of deterministic singe- and multi-
tape TMs and RAMs	



More on what “reasonable” means later…	
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The class P	



Definition: 	


P = ∪k≥1 TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in polynomial time.  I.e., L ∈ P iff there is 
an algorithm deciding L in time T(n) = O(nk) for 
some fixed k (i.e., k is independent of the input).	



Examples: sorting, shortest path, MST, connectivity,
… 	





Why “Polynomial”?	



Point is not that n2000 is a nice time bound, or that the 
differences among n and 2n and n2 are negligible.	



Rather, simple theoretical tools may not easily capture such 
differences, whereas exponentials are qualitatively different 
from polynomials and may be amenable to theoretical 
analysis.	



“My problem is in P” is a starting point for a more detailed analysis	



“My problem is not in P” may suggest that you need to shift to a more 
tractable variant 	
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22n 

2n/10 

1000n2 

 

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	
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Complexity Increase E.g. T=1012 

O(n) n0  2n0 1012 2  x 1012 

O(n2) n0  √2 n0 106         1.4  x 106 

O(n3) n0  3√2 n0 104 1.25  x 104 

2n /10 n0  n0+10 400 410 
2n n0  n0 +1 40 41 

Another view of Poly vs Exp	



Next year's computer will be 2x faster.  If I can 
solve problem of size n0 today, how large a problem 
can I solve in the same time next year? 	
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Some notes on HW #4���
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More on P vs NP	
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Lecture 16	
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Complexity Classes	



Defn:	



TIME(T(n)) = the set of languages decidable by single-tape 
TMs in time O(T(n))	



E.g. { anbn | n ≥ 0 } ∈ TIME(n log n)	
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A Church-Turing thesis for “time”?	



Church-Turing thesis: all “reasonable” models of 
computation are equivalent – i.e. all give the same set of 
decidable problems	



“Extended” Church Turing thesis: All “reasonable” models of 
computation are equivalent up to a polynomial difference in 
time complexity	



E.g. from above, this is true of deterministic singe- and multi-
tape TMs and RAMs	



More on what “reasonable” means later…	
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The class P	



Definition: 	


P = ∪k≥1 TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in polynomial time.  I.e., L ∈ P iff there is 
an algorithm deciding L in time T(n) = O(nk) for 
some fixed k (i.e., k is independent of the input).	



Examples: sorting, shortest path, MST, connectivity,
… 	
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22n 

2n/10 

1000n2 

 

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	





Nondeterministic Time	



Given a nondeterministic TM M that 
always halts, its run time T(n) is the 
length of the longest computation path 
(accepting or rejecting) on any input of 
length n.	



(In fact, the theory doesn’t change much if you 
make it “shortest accepting path”, but that’s just 
a detail.) 	
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T(n)!
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The class NP	



Definition: 	


NP = ∪k≥1Nondeterministic-TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in Nondeterministic polynomial time.  I.e., 
L ∈ NP iff there is a nondeterministic algorithm 
deciding L in time T(n) = O(nk) for some fixed k 
(i.e., k is independent of the input).	



Ex: sorting, shortest path, …, and (probably) more! 	
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T(n)!

2cT(n)!

accept 

NTIME(T) ⊆ DTIME(2O(T))	



Theorem: Every problem 
solvable in nondeterministic 
time T(n) can be solved 
deterministically in time  
exponential in T(n)	



Proof:	


As before, do breadth first 
simulation. (Depth-first 
works too.)	
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The Clique Problem	



Given: a graph G=(V,E) and an integer k	



Question: is there a subset U of V with���
|U| ≥ k such that every pair of vertices in U is joined by an 
edge.	
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"Problem" – the general case	


Ex: The Clique Problem: Given a graph G and an integer k, 
does G contain a k-clique?	



"Problem Instance" – the specific cases	


Ex: Does                     contain a 4-clique? (no)	


Ex: Does                     contain a 3-clique? (yes)	



Decision Problems – Just Yes/No answer	


Problems as Sets of "Yes" Instances	



Ex: CLIQUE = { (G,k) | G contains a k-clique }	


E.g., (                 , 4) ∉  CLIQUE	


E.g., (                 , 3) ∈  CLIQUE	



Some Convenient Technicalities	
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Satisfiability	



Boolean variables x1, ..., xn	


taking values in {0,1}.  0=false, 1=true	



Literals	


xi or ¬xi for i = 1, ..., n	



Clause	


a logical OR of one or more literals	


e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	



CNF formula (“conjunctive normal form”)	


a logical AND of a bunch of clauses	
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Satisfiability	



CNF formula example	


(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)	



If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable	



the one above is, the following isn’t	


x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3���

Satisfiability:  Given a CNF formula F, is it satisfiable?	
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Satisfiable?	
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Common property of these problems: ���
Discrete Exponential Search���

 Loosely–find a needle in a haystack	



“Answer” is literally just yes/no, but there’s always a 
somewhat more elaborate “solution” (aka “hint” or 
“certificate”) that transparently‡ justifies each “yes” 
instance (and only those) – but it’s buried in an 
exponentially large search space of potential solutions. 	



‡Transparently = verifiable in polynomial time	
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Midterm review	
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Lecture 18	



Midterm	
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The class NP	



Definition: 	


NP = ∪k≥1Nondeterministic-TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in Nondeterministic polynomial time.  I.e., 
L ∈ NP iff there is a nondeterministic algorithm 
deciding L in time T(n) = O(nk) for some fixed k 
(i.e., k is independent of the input).	





Alternate Views of Nondeterminism	



NTM – there is a path…	



Parallel – make the tree	



Search – look for a path (or sat-ing assignment or clique or…) 	



Guess and Check	



Polynomial Verifier	
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Alternate Way To Define NP	



A language L is polynomially verifiable iff there is a polynomial 
time procedure v(-,-), (the “verifier”) and an integer k such 
that 	



for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	


for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	



(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings.)	



Equivalently:	



There is some integer k and language Lv in P s.t.: 	


           L = { x | ∃y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv }	





Example: Clique	



“Is there a k-clique in this graph?”	


any subset of k vertices might be a clique	


there are many such subsets, but I only need to find one	



if I knew where it was, I could describe it succinctly, e.g. 
"look at vertices 2,3,17,42,...", 	



I'd know one if I saw one: "yes, there are edges between ���
2 & 3, 2 & 17,... so it's a k-clique”	



this can be quickly checked	


And if there is not a k-clique, I wouldn’t be fooled by a 
statement like “look at vertices 2,3,17,42,...”  	
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More Formally: CLIQUE is in NP	



procedure v(x,h)	


if 	


    x is a well-formed representation of  a graph ���
    G = (V, E) and an integer k, 	


and 	


    h is a well-formed representation of a k-vertex ���
    subset U of V, 	


and 	


	

U is a clique in G, 	



then output "YES"	


else output "I'm unconvinced" 	
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Is it correct?	



For every x = (G,k) such that G contains a k-clique, 
there is a hint h that will cause v(x,h) to say YES, 
namely h = a list of the vertices in such a k-clique	



and	


No hint can fool v into saying yes if either x isn't 
well-formed (the uninteresting case) or if x = (G,k) 
but G does not have any cliques of size k (the 
interesting case)	





The 2 defns are equivalent	



Theorem: L in NP iff L is polynomially verifiable	



Pf: ⇒ Let M be a poly time NTM for L, x an input to M, |x| = 
n.  If x in L there is an accepting computation history y for 
M on x. If M runs T = nO(1) steps on x, then y is T+1 
configs, each of length ~T, so |y| = O(T2) = nO(1). 
Furthermore, a deterministic TM can check that y is an 
accepting history of M on x in poly time.  Critically, if x is 
not accepted, no y will pass this check.  Thus, L is poly 
time verifiable. ���
(We could equally well let y encode the sequence of nondeterministic 
choices M makes along some accepting path.)	
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The 2 defns are equivalent (cont.)	



Theorem: L in NP iff L is polynomially verifiable	



Pf: ⇐ Suppose L is poly time verifiable, V is a time nd -time 
TM implementing the verifier, and k is the exponent in the 
hint length bound.  Consider this TM:	



M: on input x, nondeterministically choose a string y of 
length at most |x|k, then run V on ⟨x,y⟩; accept iff it does.	



Then M is an NTM accepting L: By defn of poly verifier���
x ∈ L iff ∃y, |y| ≤ |x|k ⋀ V accepts 〈x,y〉, and M tries 
(nondeterministically) all such y’s, accepting iff it finds one 
that V accepts.	



Time bound for M:  ??	
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(|x|+|x|k+3)d  =  O(nkd) = nO(1)	





Example: SAT	



“Is there a satisfying assignment for this Boolean 
formula?”	



any assignment might work      	



there are lots of them     	



I only need one     	



if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T"      	


I'd know one if I saw one: "yes, plugging that in, I see formula = T...” 
this can be quickly checked	



And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T, 
x2=F, ..., xn=F"      	
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More Formally: SAT ∈ NP	



Hint: the satisfying assignment A	



Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	


Syntax: True iff  F is a well-formed formula & A is a truth-
assignment to its variables	



Satisfies: plug A into F and evaluate	



Correctness:	


If F is satisfiable, it has some satisfying assignment A, and 
we’ll recognize it	



If F is unsatisfiable, it doesn’t, and we won’t be fooled	





Alternate Views of Nondeterminism	



NTM – there is a path…	



Parallel – make the tree	



Search – look for a path (or sat-ing assignment or clique or…) 	



Guess and Check	



Polynomial Verifier	
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The complexity class NP	



NP consists of all decision problems where 	



You can verify the YES answers efficiently (in polynomial 
time) given a short (polynomial-size) hint	



And	



No hint can fool your polynomial time verifier into saying 
YES for a NO instance	



(implausible for all exponential time problems)	



one among exponentially many; 
know it when you see it!
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Keys to showing  that ���
a problem is in NP	



What's the output?  (must be YES/NO)	



What's the input?  Which are YES?	


For every given YES input, is there a hint that would help?  Is 
it polynomial length?	



OK if some inputs need no hint	



For any given NO input, is there a hint that would trick you?	





Example	



ATM is in NP	



Input: a pair <M,w>	


Output: yes/no does M accept w	



Hint: y, an accepting computation history of M on w	


Clearly, such a y exists for all accepted x  and only accepted 

x, so we accept the right x’s and reject the rest.	



And it’s fast – checking successive configs in the history is at 
worst quadratic in the length of the history, so the verifier 
for <x,y> runs in time |<x,y>|O(1).	



58	



FALSE	
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P and NP	



Definition: 	


P = ∪k≥1 TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in polynomial time.  	



NP = ∪k≥1Nondeterministic-TIME(nk)	


I.e., the set of (decision) problems solvable by 
computers in Nondeterministic polynomial time.  	
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Alternate Definition of NP	



A language L is polynomially verifiable iff there is a polynomial 
time procedure v(-,-), (the “verifier”) and an integer k such 
that 	



for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	


for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	



(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings.)	



Equivalently:	



There is some integer k and language Lv in P s.t.: 	


           L = { x | ∃y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv }	





Example	



ATM is in NP	



Input: a pair <M,w>	


Output: yes/no does M accept w	



Hint: y, an accepting computation history of M on w	


Clearly, such a y exists for all accepted x  and only accepted 

x, so we accept the right x’s and reject the rest.	



And it’s fast – checking successive configs in the history is at 
worst quadratic in the length of the history, so the verifier 
for <x,y> runs in time |<x,y>|O(1).	
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FALSE	





Example	



ATM is in NP	



Input: a pair <M,w>	


Output: yes/no does M accept w	



Hint: y = 0 or 1, depending on whether M accepts w	


Clearly, such a y exists, so we accept the right x’s and reject 

the rest.	



And it’s really fast – just read the bit and accept/reject.	
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FALSE	
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nk!

2nk!

accept 

Needle  
in the  

haystack 

P vs NP vs Exponential Time	



Theorem: Every problem in 
NP can be solved 
deterministically in 
exponential time	



Proof: “hints” are only nk 
long; try all 2nk possibilities, 
say by backtracking.  If any 
succeed, say YES; if ���
all fail, say NO.	
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NP!

P!

Exp!
Worse… 

P and NP	



Every problem in P is in NP	


one doesn’t even need a hint for 
problems in P so just ignore any 
hint you are given	



Every problem in NP is in 
exponential time	



I.e., P ⊆ NP ⊆ Exp	


We know P ≠ Exp, so either 
P ≠NP, or NP ≠ Exp (most 
likely both)	





Problems	



Short Path:	


   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 
vertices s, t, and an integer k, for which there is a path from 
s to t of length ≤ k	



Long Path:	


   4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with 
vertices s, t, and an integer k, for which there is an acyclic 
path from s to t of length ≥ k	
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Mostly Long Paths	



“Are the majority of paths from A to B long (>k)?”	


     Any path might work	



     There are lots of them	



     I only need one	



     If I knew one I could describe it ���
succinctly, e.g., "go from A to node���
2, then node 42, then ... ”	


     I'd know one if I saw one: "yes, I���
see an edge from A to 2 and from ���
2 to 42... and total length > k”	


     And if there isn’t a long path, I wouldn’t be fooled …	
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Yes!	

 No, this is a 
collective 
property of the 
set of all paths in 
the graph, and no 
one path 
overrules the rest	





70	



More Problems	



Independent-Set: 	


Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer, for which there is  a subset U of V  
with |U| ≥ k such that no two vertices in U are 
joined by an edge.	



Clique: 	


Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is 
an integer k, for which there is a subset U of V 
with |U| ≥ k such that every pair of vertices in U 
is joined by an edge.	
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More Problems	



Euler Tour: 	


Graphs G=(V,E) for which there is a cycle traversing each 
edge once.	



Hamilton Tour: 	


Graphs G=(V,E) for which there is a simple cycle of length 
|V|, i.e., traversing each vertex once.	



TSP: 	


Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is 
an integer, such that there is a Hamilton tour of G with 
total weight ≤ k.	





Generic Pattern in These Examples	
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Set of all x for which there is a y with some property P, and���
1) y isn’t too big (|y| ≤ |x|O(1)), and ���
2) the property is easy (poly time) to check (given x & y; 
perhaps not easy at all given only x)	



“There is a” is a reflection of the quantifier characterization 
of NP:	



L is in NP iff there is some integer k and language Lv in P s.t.: 	


           L = { x | ∃y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv }	





Some similar patterns that suggest  
problems not in NP	



Rather than “there is a…” maybe it’s “no…” or “for all…”	



E.g.	


    UNSAT: “no assignment satisfies formula,” or ���

“for all assignments, formula is false”	



Or	


    NOCLIQUE: “every subset of k vertices is not a k-clique”	



These examples are in co-NP: complements of problems in 
NP. (Quantifier characterization: ���
… L = { x | ∀y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv } … )	



NP == co-NP ?  Unknown, but seems unlikely.	
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Some similar patterns that suggest  
problems not in NP	



Rather than “there is a…” maybe it’s “…is the min (or max)…”	



E.g.	


	

MAXCLIQUE: k is the size of the largest clique in G	



Or	


	

MINTSP: k is the cost of the cheapest Ham cycle in G	



Again, they seem NP-like, but are probably “harder.”  E.g., ���
not only do you need to prove existence of k-clique (a 
problem in NP) you also need to prove absence of a ���
(k+1)-clique (a co-NP question) ���
Quantifier structure often: “… ∃y1∀y2 (y1 < y2 ⇒…)”	
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Some similar patterns that suggest  
problems not in NP	



Rather than “there is a…” maybe it’s … something even 
more complicated, like 	



•  the “mostly long paths” example above, 	


•  “there is an exponentially long string y with property P”, 	



•  some quantifier structure other than just ∃, such as    ���
   “∃x1∀x2∃x3∀x4∃x5∀x6…formula(x1…xn) = True”	



•  or many other things	



Bottom line: ���
NP is a common, but not universal, problem pattern	



76	





2 Final Points About “Hints” 	



1.  Hints/verifiers aren’t unique.  The “… there is a …” 
framework often suggests their form, but many 
possibilities	


	

“is there a clique” could be verified from its vertices, or its edges, or 
all but 3 of each, or all non-vertices, or…  Details of the hint string 
and the verifier and its time bound shift, but same bottom line	



2. In NP doesn’t prove its hard	


	

“Short Path” or “Small spanning tree” can be formulated as “…there 
is a…”, but, due to very special structure of these problems, we can 
quickly find the solution even without a hint.  The mystery is whether 
that’s possible for the other problems, too.	
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Lecture 21	
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Review from previous lecture	



P  ⊆ NP ⊆ Exp; at least one containment is proper	



Examples in NP:	


	

SAT, short/long paths, Euler/Ham tours, clique, indp set…	



Common feature:	


	

“… there is a …”	



(and some related problems do not appear to share this 
feature: UnSAT, maxClique, MostlyLongPaths, …)	
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Euler Tour	


2-SAT	



2-Coloring	


Min Cut	



Shortest Path	
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Hamilton Tour	


3-SAT	



3-Coloring	


Max Cut	



Longest Path	



Similar pairs; seemingly 
different computationally!

Superficially different; 
sim

ilar com
putationally!

Some Problem Pairs	
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The most obvious algorithm for most of these 
problems is brute force:	



try all possible hints; check each one to see if it works.	


Exponential time:	



2n truth assignments for n variables	



n! possible TSP tours of n vertices	



     possible k element subsets of n vertices	



etc.	



…and to date, every alg, even much less-obvious 
ones, are slow, too 	



⎟
⎠

⎞
⎜
⎝

⎛
k
n

Solving NP problems without hints	
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P vs NP	



Theory	


P = NP ?	



Open Problem!	


I bet against it	



Practice	


Many interesting, useful, 
natural, well-studied 
problems known to be 
NP-complete	


With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances	
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Another NP problem: ���
Vertex Cover	



Input: Undirected graph G = (V, E), integer k.	


Output: True iff there is a subset C of V of ���
size ≤ k such that every edge in E is incident to at 
least one vertex in C.	



Example: Vertex cover of size ≤ 2.	



In NP?  Exercise	
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3SAT ≤p VertexCover 	
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3SAT ≤p VertexCover 	
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3SAT ≤p VertexCover 	
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k=6 

3SAT ≤p VertexCover 	
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k=6 

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	



(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)	
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f                                                                           =	



3-SAT Instance:!
– Variables: x1, x2, …     !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	
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k=6 

3SAT ≤p VertexCover 	





107	



Correctness of “3SAT ≤p VertexCover”	



Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group, plus 
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of 
clauses.  Note: f does not know whether formula is satisfiable or not; does not know if 
G has k-cover; does not try to find satisfying assignment or cover.	


Correctness:	


 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.  	


 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Add other 
2 nodes of each triangle to cover.  Show it is a cover: 2 per triangle cover triangle 
edges; only true literals (but perhaps not all true literals) uncovered, so at least 
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) 
truth assignment since no (x, ¬x) pair uncovered.  It satisfies c since there is one 
uncovered node in each clause triangle (else some other clause triangle has > 1 
uncovered node, hence an uncovered edge.)	





Lecture 22	
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k=6 

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	



(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)	
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f                                                                           =	



3-SAT Instance:!
– Variables: x1, x2, …     !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	
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Correctness of “3SAT ≤p VertexCover”	



Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group, plus 
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of 
clauses.  Note: f does not know whether formula is satisfiable or not; does not know if 
G has k-cover; does not try to find satisfying assignment or cover.	


Correctness:	


 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.  	


 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Add other 
2 nodes of each triangle to cover.  Show it is a cover: 2 per triangle cover triangle 
edges; only true literals (but perhaps not all true literals) uncovered, so at least 
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) 
truth assignment since no (x, ¬x) pair uncovered.  It satisfies c since there is one 
uncovered node in each clause triangle (else some other clause triangle has > 1 
uncovered node, hence an uncovered edge.)	
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(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	



Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	



Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES, 
y has a vertex cover of the given size”	



On the other hand, suppose no fast alg is possible 
for 3SAT, then we know none is possible for 
VertexCover either.	
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“3SAT ≤p VertexCover” Retrospective	



Previous slide: two suppositions	



Somewhat clumsy to have to state things that way.	


Alternative: abstract out the key elements, give it a name 
(“polynomial time mapping reduction”), then properties like 
the above always hold. 	
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Polynomial-Time Reductions	



Definition: Let A and B be two problems.	


We say that A is polynomially (mapping) reducible to 
B (A  ≤p B) if there exists a polynomial-time 
algorithm f that converts each instance x of problem 
A to an instance f(x) of B such that: ���

x is a YES instance of A  iff  f(x) is a YES instance of B	



x ∈ A   ⇔   f(x) ∈ B 	
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polynomial 

W
hy

 th
e 

no
ta

tio
n?

 

Polynomial-Time Reductions (cont.)	



Define: A ≤p B  “A is polynomial-time reducible to 
B”, iff there is a polynomial-time computable 
function f such that:   x ∈ A   ⇔   f(x) ∈ B 	



“complexity of A” ≤ “complexity of B” + “complexity of f”	



(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P 	


(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P  	


(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity)	
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Two definitions of “A ≤p B”	



Some books use more general defn: “could solve A 
in poly time, if I had a poly time subroutine for B.”	



Defn on previous slides is special case where you 
only get to call the subroutine once, and must 
report its answer.	



This special case is used in ~98% of all reductions 
(And is the only one used in Ch 7, I think.)	



K
ar

p 
   

   
   

   
C

oo
k	





124	



NP-Completeness	



Definition: Problem B is NP-hard if 
every problem in NP is polynomially 
reducible to B.	



Definition: Problem B is NP-complete 
if:	



(1) B belongs to NP, and 	



(2) B is NP-hard.	



NP!

P!

Exp!

NP-Hard	



NP-Complete	





Lecture 23	
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polynomial 
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Polynomial-Time Reductions (cont.)	



Define: A ≤p B  “A is polynomial-time reducible to 
B”, iff there is a polynomial-time computable 
function f such that:   x ∈ A   ⇔   f(x) ∈ B 	



“complexity of A” ≤ “complexity of B” + “complexity of f”	



(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P 	


(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P  	


(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity)	
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NP-Completeness	



Definition: Problem B is NP-hard if 
every problem in NP is polynomially 
reducible to B.	



Definition: Problem B is NP-complete 
if:	



(1) B belongs to NP, and 	



(2) B is NP-hard.	



NP!

P!

Exp!

NP-Hard	



NP-Complete	





“NP-completeness”	



Cool concept, but are there ���
any such problems?	



Yes!	



Cook’s theorem: SAT is NP-complete	
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Why is SAT NP-complete?	



Cook’s proof is somewhat involved; details later.  
But its essence is not so hard to grasp:	
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Encode “solution” using Boolean variables.  SAT mimics “is there a solution” 
via “is there an assignment”.  Digital computers just do Boolean logic, and 
“SAT” can mimic that, too, hence can verify that the assignment actually 
encodes a solution.	



Generic “NP” problem:	


is there a poly size “solution,” 
verifiable by computer in poly time	



“SAT”:	


is there a (poly size) assignment 
satisfying the formula
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Proving a problem is NP-complete	



Technically, for condition (2) we have to show that 
every problem in NP is reducible to B.  ���
(Yikes!  Sounds like a lot of work.)	



For the very first NP-complete problem (SAT) this 
had to be proved directly. 	



However, once we have one NP-complete problem, 
then we don’t have to do this every time.	



Why? Transitivity.	





136	



Alt way to prove NP-completeness	



Lemma: Problem B is NP-complete if:	


(1)  B belongs to NP, and 	


(2’) A is polynomial-time reducible to B, for some problem 
A that is NP-complete.	



That is, to show (2’) given a new problem B, it is 
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to 
B.	
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Ex: VertexCover is NP-complete	



3-SAT is NP-complete (shown by S. Cook)	



3-SAT ≤p VertexCover	


VertexCover is in NP (we showed this earlier)	


Therefore VertexCover is also NP-complete	



So, poly-time algorithm for VertexCover would give 
poly-time algs for everything in NP	
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NP-complete problem: Clique	



Input: Undirected graph G = (V, E), integer k.	


Output: True iff there is a subset C of V of   ���
size ≥ k such that all vertices in C are connected to 
all other vertices in C.	



Example: 	

Clique of size ≥ 4	



In NP?  Exercise	
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k=3 

3SAT ≤p Clique 	
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k=3 

3SAT ≤p Clique 	
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k=3 

3SAT ≤p Clique 	
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k=3 

3SAT ≤p Clique 	
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x1! x1! x3!

x2! ¬x2!

¬x3! ¬x3! ¬x1!

k=3 

3SAT ≤p Clique 	



(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)	





3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

Clique Instance:!
–  K != q!
–  G!= (V, E)!
–  V != { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!
–  E != { ( [i,j], [k,l] ) | i ≠ k and yij ≠ ¬ykl }!

3SAT ≤p Clique 	



f                                      	

 	

 	

       =	
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Correctness of “3-SAT ≤p Clique”	



Summary of reduction function f: ���
Given formula, make graph G with column of nodes per clause, one node per 
literal.  Connect each to all nodes in other columns, except complementary 
literals (x, ¬x). Output graph G plus integer k = number of clauses.  Note: f does 
not know whether formula is satisfiable or not; does not know if G has k-clique; does not 
try to find satisfying assignment or clique.	


Correctness:	


Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.  	


Show c in 3-SAT iff f(c)=(G,k) in Clique: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Show 
corresponding nodes in G are k-clique. ���
(⇐) Given a k-clique in G, clique labels define a truth assignment; show it satisfies 
c.  Note: literals in a clique are a valid truth assignment [no “(x, ¬x)” edges] & k 
nodes must be 1 per column, [no edges within columns].  	





Example:	



3-SAT ≤p UndirectedHamPath	



(Note: this is not 
the same as the 
reduction given in 
the book.)	



(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)   

x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

x  y 



Ham Path Gadget	


X	



Many copies of this 12-node gadget, each with one or more edges 
connecting each of the 4 corners to other nodes or gadgets (but no 
other edges to the 8 “internal” nodes).	



Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as 
shown); the other (by symmetry) 0→0’	



Pf: Note *: at 1st visit to any column, must next go to middle node in column, else 
it will subsequently become an untraversable “dead end.”  ���
WLOG, suppose enter at 1.  By *, must then go down to 0.  2 cases:	



Case a: (top left) If next move is to right, then * forces path up, left is blocked, so 
right again, * forces down, etc; out at 1’.	



Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’.  * forces 
next move to be up/down to the other of 0’/1’.  Must then go left to reach the 
2 middle columns,  but there’s no exit from them.  So case b is impossible.	
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1	



0	



1’	



0’	

0’	



1	



0	



1’	
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Example:	



3-SAT ≤p UndirectedHamPath	



(Note: this is not 
the same as the 
reduction given in 
the book.)	



(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)   

x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

x  y 



3-SAT ≤p UndirectedHamPath	



Time for the reduction: to be computable in poly time it is necessary (but 
not sufficient) that G’s size is polynomial in n, the length of the formula. 
Easy to see this is true, since G has q + 12 (p + m) + 1 = O(n) vertices, 
where q is the number of clauses, p is the number of instances of literals, 
and m is the number of variables.  Furthermore, the structure is simple 
and regular, given the formula, so easily / quickly computable, but details 
are omitted. (More detail expected in your homeworks, e.g.)	
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x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

y x  



Ham Path Gadget	


X	



Many copies of this 12-node gadget, each with one or more edges 
connecting each of the 4 corners to other nodes or gadgets (but no 
other edges to the 8 “internal” nodes).	



Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as 
shown); the other (by symmetry) 0→0’	



Pf: Note *: at 1st visit to any column, must next go to middle node in column, else 
it will subsequently become an untraversable “dead end.”  ���
WLOG, suppose enter at 1.  By *, must then go down to 0.  2 cases:	



Case a: (top left) If next move is to right, then * forces path up, left is blocked, so 
right again, * forces down, etc; out at 1’.	



Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’.  * forces 
next move to be up/down to the other of 0’/1’.  Must then go left to reach the 
2 middle columns,  but there’s no exit from them.  So case b is impossible.	
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1	



0	



1’	



0’	

0’	



1	



0	



1’	





Correctness, I	



Ignoring the clause nodes, there are 2m s-t paths along the 
“main chain,” one for each of 2m assignments to m variables.	



If f is satisfiable, pick a satisfying assignment, and pick a true 
literal in each clause.  Take the corresponding “main chain” 
path; add a detour to/from ci for the true literal chosen from 
clause i.  Result is a Hamilton path.	
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…∨  xk  ∨…	



xk=T	



xk chosen in clause ci 	



x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

y x  



Correctness, II	



Conversely, suppose G has a Ham path.  Obviously, the path must 
detour from the main chain to each clause node ci.  If it does not return 
immediately to the next gadget on main chain, then (by gadget properties 
on earlier slide), that gadget cannot be traversed.  Thus, the Ham path 
must consistently use “top chain” or consistently “bottom chain” exits to 
clause nodes from each variable gadget.  If top chain, set that variable 
True; else set it False.  Result is a satisfying assignment, since each clause 
is visited from a “true” literal.	
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Detour only possible 
on an xk=T subpath	



X	



xk=T	

 And must immediately return	



x ∨ y	



¬x ∨ y	

 ¬x ∨ ¬y	



s	

 t	


¬x  ¬y 

y x  

…∨  xk  ∨…	





Subset-Sum, AKA Knapsack	



KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C }	



wi’s and C encoded in radix r ≥ 2.  (Decimal used in 
following example.)	



Theorem:  3-SAT  ≤p  KNAP	


Pf: given formula with p variables & q clauses, build KNAP instance with ���

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal” 
weights, H.O. p digits mark which variable; L.O. q digits show which 
clauses contain it. Two “slack” weights per clause mark that clause. ���
See example below.	
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3-SAT  ≤p  KNAP	



Variables	

 Clauses	


x	

 y	

 (x ∨ y) 	

 (¬x ∨ y) 	

 (¬x ∨ ¬y) 	



Li
te

ra
ls
	

 w1  (  x)	

 1	

 0	

 1	

 0	

 0	



w2  (¬x) 	

 1	

 0	

 0	

 1	

 1	


w3  (  y)	

 1	

 1	

 1	

 0	


w4  (¬y)	

 1	

 0	

 0	

 1	



Sl
ac

k	



w5  (s11)	

 1	

 0	

 0	


w6  (s12)	

 1	

 0	

 0	


w7  (s21)	

 1	

 0	


w8  (s22)	

 1	

 0	


w9  (s31)	

 1	


w10 (s32)	

 1	


C	

 1	

 1	

 3	

 3	

 3	
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Formula: (x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)   



Correctness	



Poly time for reduction is routine; details omitted	


If formula is satisfiable, select the literal weights corresponding to the 

true literals in a satisfying assignment. If that assignment satisfies k 
literals in a clause, also select (3 – k) of the “slack” weights for that 
clause.  Total will equal C.	



Conversely, suppose KNAP instance has a solution.  Note ≤ 5 one’s per 
column, so no “carries” in sum (recall – weights are decimal); i.e., 
columns are decoupled.  Since H.O. p digits of C are 1, exactly one of 
each pair of literal weights included in the subset, so it defines a valid 
assignment. Since L.O. q digits of C are 3, but at most 2 “slack” 
weights contribute to it, at least one of the selected literal weights 
must be 1 in that clause, hence the assignment satisfies the formula.	
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As a supplement to Paul Beame’s guest lecture, here are a 
few slides of mine on roughly the same topics.  Again, this 
won’t be exactly the same as what he did or as what’s in the 
book, but hopefully another perspective will help clarify it all.	



159	





Boolean Circuits	



Directed acyclic graph	



Vertices = Boolean logic gates (∧, ∨, ¬, …)!
Multiple input bits (x1, x2, … )	


Single output bit (w)	



Gate values as expected (e.g. by induction on depth to xi’s)	
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∧! ¬! ∨!
x1!

x2!

w!



Boolean Circuits	



Two Problems:	


	

Circuit Value: given a circuit and an assignment of ���
values to its inputs, is its output = 1?	



	

Circuit SAT: given a circuit, is there an assignment of 
values to its inputs such that output = 1? 	
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∧! ¬! ∨!
x1!

x2!

w!



Boolean Circuits and Complexity	



Two Problems:	



	

Circuit Value: given a circuit and an assignment of ���
values to its inputs, is its output = 1?	



	

Circuit SAT: given a circuit, is there an assignment of 
values to its inputs such that output =1? 	



Complexity:	


	

Circuit Value Problem is in P	



	

Circuit SAT Problem is in NP	


Given implementation of computers via Boolean circuits, it 
may be unsurprising that they are complete in P/NP, resp.	
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∀ L ∈ P, L ≤p CVP 	



Let M be a 1-tape, poly time TM.  WLOG M accepts at left end of tape. 
“History” of M on input x:	
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 T = nk	



T
 =

 n
k	



a b q,c 

q’,b 

Every cell in tableau is a simple, discrete 
function of 3 above it, e.g., if δ(q,c) = (q’,e,-1):	



b q,c d 

e 

Bool encoding of cell content;  fixed circuit 
computes new cell; replicate it across tableau	



← x →	



qaccept?	





Some Details	



For q ∈ Q, a ∈ Γ,1 ≤ i,j ≤ T, let 	


	

state(q,i,j) = 1if M in state q at time i w/ head in tape cell j, and���
letter(a,i,j) = 1 if tape cell j holds letter a at time i.	



writes(i,j) = ∨q ∈ Q state(q,i,j)	


letter(b,i,j) = (¬writes(i,j) ⋀ bi-1,j) ⋁ 	



                    (writes(i,j) ⋀ ∨(q,a) state(q,i-1,j) ⋀ letter(a,i-1,j)) ���
               where the “or” is over {(q,a) | (-,b,-) = δ(q,a)} 	



state(p,i,j) = ∨(q,a,d) state(q,i-1,j-d) ⋀ letter(a,i-1,j-d), ���
              where the “or” is over {(q,a,d) | (p,-,d) = δ(q,a)} , d = ±1	



Row 0: initial config; columns -1,T+1: all false	



Output: state(qaccept,T,1)	
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Again, not exactly the 
version in the book, 
but close in spirit…	



write cell i @ step j	



no head, no change���

“or” configs writing “b”	



“or” configs entering p	





Result is something vaguely like this:	
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Similarly: ∀L∈NP, L ≤p Circuit-SAT 	



Let M be a 1-tape, poly time NTM.  WLOG M accepts at left end of tape. 
“History” of M on input x:	
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nk	



nk
	



a b q,c 

q’,b 

Every cell in tableau is a simple, discrete 
function of 3 above it, plus 1 ND choice bit; 
e.g., if (q’,e,L) ∈ δ(q,c)  :	



b q,c d 

e 

Bool encoding of cell content;  fixed circuit 
computes new cell; replicate it across tableau	



qaccept?	



N
D

 b
its
	



← x →	



Choice 1	





TM input → circuit constants;  ���
circuit inputs are the choice bits; ���
circuit is satisfiable iff ∃ seq of choices s.t. NTM accepts	



Additionally, assume NTM has only 2 nondet choices at each step.	


For q ∈ Q, a ∈ Γ,1 ≤ i,j ≤ T, state(q,i,j), letter(a,i,j) as before.  Let	



	

choice(i) = 0/1define which ND choice M makes at step i 	



Then, letter() and state() circuits change to incl choice, e.g.:	



state(p,i,j) = ¬choice(i-1) ⋀ (∨(q,a,d) state(q,i-1,j-d) ⋀ letter(a,i-1,j-d)) ⋁	



                     choice(i-1) ⋀ (∨(q’,a’,d’) state(q’,i-1,j-d’) ⋀ letter(a’,i-1,j-d’)) , ���
            where the “ors” are over 	


	

 	

 	

{(q,a,d)   | (p,-,d) = δ(q, a, choice=0)} ,	


	

 	

 	

{(q’,a’,d’) | (p,-,d’) = δ(q’, a’, choice=1)} ,  d = ±1	



AND	



Some Details	
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Correctness	



Poly time reduction: 	



	

Given δ, key subcircuit is fixed, size O(1).  Calculate n = 
input length, T = nk. Circuit has O(T2) = O(n2k) copies of 
that subcircuit, (plus some small tweaks at boundaries).  	



Circuit exactly reflects M’s computation, given the choice 
sequence.  So, if M accepts input x, then there is a choice 
sequence s.t. circuit will output 1, i.e., the circuit is 
satisfiable. Conversely, if the circuit is satisfiable, then any 
satisfying input constitutes a choice sequence leading M to 
accept x.	



Thus, Circuit-SAT is NP-complete.	
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(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3	



Replace with 3-CNF Equivalent:	



∧! ¬! ∨!
x1!

x2! w1! w2! w3!

Circuit-SAT ���
≤p 3-SAT	



x1	

 x2	

 w1	

 x1∧x2	

 ¬(w1⇔(x1∧x2))	



0	

 0	

 0	

 0	

 0	



0	

 0	

 1	

 0	

 1	

 ← ¬x1 ∧ ¬x2 ∧   w1	



0	

 1	

 0	

 0	

 0	



0	

 1	

 1	

 0	

 1	

 ← ¬x1 ∧    x2 ∧   w1	



1	

 0	

 0	

 0	

 0	



1	

 0	

 1	

 0	

 1	

 ←   x1 ∧  ¬x2 ∧   w1	



1	

 1	

 0	

 1	

 1	

 ←   x1 ∧     x2 ∧ ¬w1	



1	

 1	

 1	

 1	

 0	



¬clause  
↓ 

 Truth Table 
↓ 

 DNF   
↓ 

 DeMorgan 
↓ 

CNF 

∧! ¬! ∨!f(                   ) = (x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨¬x2∨w1)…	



Build truth table clause-by-clause vs whole formula, so n*23 vs 2n rows 	
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Correctness of “Circuit-SAT ≤p 3-SAT”	



Summary of reduction: Given circuit, add variable for every gate’s value, 
build clause for each gate, satisfiable iff gate value variable is appropriate 
logical function of its input variables, convert each to CNF via standard 
truth-table construction. Output conjunction of all, plus output variable.  
Note: as usual, does not know whether circuit or formula are satisfiable or not; 
does not try to find satisfying assignment.	


Correctness:	


Show it’s poly time computable: A key point is that formula size is linear 
in circuit size; mapping basically straightforward; details omitted.  	


Show c in Circuit-SAT iff f(c) in SAT: ���
(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by 
evaluating the circuit on xi’s gate by gate.  Show this satisfies f(c). ���
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s satisfy c 
(with gate values given by wi’s).	


Thus, 3-SAT is NP-complete.	





Lecture 26	
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Common Errors in ���
NP-completeness Proofs	



Backwards reductions	


Bipartiteness ≤p SAT is true, but not so useful. ���
(XYZ ≤p SAT shows XYZ in NP, doesn’t show it’s hard.)	



Sloooow Reductions 	


“Find a satisfying assignment, then output…”	



Half Reductions	


Delete clause nodes in HAM reduction.  It’s still true that 
“satisfiable ⇒ G has a Ham path”, but path doesn’t 
necessarily give a satisfying assignment.	
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Coping with NP-Completeness	



Is your real problem a special subcase?	


E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto  3- vs 2-
coloring	


E.g. you only need planar graphs, or degree 3 graphs, …?	



Guaranteed approximation good enough?	


E.g. Euclidean TSP within 2 * Opt in poly time	



Fast enough in practice (esp. if n is small), 	


E.g. clever exhaustive search like backtrack, branch & 
bound, pruning	



Heuristics – usually a good approximation and/or 
usually fast	
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5 

3 

4 6 

4 7 
2 

5 

8 

           Example:	



	

          b = 34	



NP-complete problem: TSP	



Input: An undirected graph 
G=(V,E) with integer edge 
weights, and an integer b.	



Output: YES iff there is a 
simple cycle in G passing 
through all vertices (once), 
with total cost ≤ b.	
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€ 

limn→∞

NN
OPT

→∞

TSP - Nearest Neighbor Heuristic	



NN Heuristic –go to nearest unvisited vertex	



Fact: NN tour can be about (log n) x opt, i.e. ���

(above example is not that bad)	





199	



2x Approximation to EuclideanTSP	



A TSP tour visits all vertices, so contains a spanning tree, so 
TSP cost is > cost of min spanning tree.	



Find MST	



Find “DFS” Tour	



Shortcut	



TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP	



5 

3 

4 

2 
5 

6 

4 7 

8 
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NP!

P!

Exp!
Worse… 

NP-C  Summary	



Big-O    –  good	


P           –  good	


Exp       –  bad	


Exp, but hints help?  NP	


NP-hard, NP-complete – bad (I bet)	


To show NP-complete – reductions	


NP-complete = hopeless? – no, but you ���
  need to lower your expectations: ���
  heuristics & approximations.	
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“I can’t find an efficient algorithm, but neither can all these 
famous people.”                 [Garey & Johnson, 1979] 



Beyond NP	



Many complexity classes are worse, e.g. time 22n
, 222n

, …	



Others seem to be “worse” in a different sense, e.g., not in 
NP, but still exponential time.  E.g., let 	



	

Lp = “assignment y satisfies formula x”, ∈ P	



Then :	


	

SAT = { x | ∃y ⟨x,y⟩∈LP }	



	

UNSAT = { x | ∀y ⟨x,y⟩∈LP }	


	

QBFk = { x | ∃y1∀y2∃y3…   k ⟨x,y1…yk⟩∈LP }	



	

QBF∞ = { x | ∃y1∀y2∃y3…     ⟨x,y1…   ⟩∈LP }	
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Q	





Lecture 27	
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Beyond NP	



Many complexity classes are worse, e.g. time 22n
, 222n

, …	



Others seem to be “worse” in a different sense, e.g., not in 
NP, but still exponential time.  E.g., let 	



	

Lp = “assignment y satisfies formula x”, ∈ P	



Then :	


	

SAT = { x | ∃y ⟨x,y⟩∈LP }	



	

UNSAT = { x | ∀y ⟨x,y⟩∉LP }	


	

QBFk = { x | ∃y1∀y2∃y3…   k yk ⟨x,y1…yk⟩∈LP }	



	

QBF∞ = { x | ∃y1∀y2∃y3…        ⟨x,y1…   ⟩∈LP }	
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Q	





ΣP2 :  { x | ∃y∀z ⟨x,y,z⟩∈LP } 

⋮ 

ΔP0: 
P 

The “Polynomial Hierarchy”	



ΔP1: P time 
given SAT 

ΣP1 (NP):  
{ x | ∃y ⟨x,y⟩∈LP } 
SAT, Clique, VC, HC, Knap,…  

ΠP1
 (co-NP):  

{ x | ∀y ⟨x,y⟩∈LP }  
UNSAT,… 

ΠP2
 :  { x | ∀y∃z ⟨x,y,z⟩∈LP } 

Potential Utility: It is often easy to give such a quantifier-based 
characterization of a language; doing so suggests (but doesn’t prove) whether it 

is in P, NP, etc. and suggests candidates for reducing to it. 



Examples	



QBFk in ΣPk	



Given graph G, integers j & k, is there a set U of ≤ j vertices 
in G such that every k-clique contains a vertex in U?  	



Given graph G, integers j & k, is there a set U of ≥ j vertices 
in G such removal of any k edges leaves a Hamilton path 
in U?  	
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Space Complexity	



DTM M has space complexity S(n) if it halts on all inputs, and 
never visits more than S(n) tape cells on any input of 
length n.	



NTM …on any input of length n on any computation path.	



DSPACE(S(n)) = { L | L acc by some DTM in space O(S(n)) }	



NSPACE(S(n)) = { L | L acc by some NTM in space O(S(n)) }	
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Model-independence	



As with Time complexity, model doesn’t matter much.  E.g.:	



SPACE(n) on DTM ≈ O(n) bytes on your laptop	



Why? Simulate each by the other.	
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Space vs Time	



Time T ⊆ Space T	



	

Pf: no time to use more space	



Space T ⊆ Time 2cT	



	

Pf: if run longer, looping	
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Space seems more powerful	



Intuitively, space is reusable, time isn’t	



Ex.: SAT ∈ DSPACE(n)	



	

Pf: try all possible assignments, one after the other	



Even more: ���
QBFk =  { ∃y1∀y2∃y3…   k yk x | ⟨x,y1…yk⟩∈LP }∈ DSPACE(n)  ���
QBF∞ = { ∃y1∀y2∃y3…         x | ⟨x,y1… ⟩∈LP } ∈ DSPACE(n)	
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Q	





PSPACE = Space(nO(1))	



NP ⊆ PSPACE	



	

pf: depth-first search of NTM computation tree	
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Games	



2 player “board” games	



E.g., checkers, chess, tic-tac-toe, nim, go, …	


A finite, discrete “game board”	



Some pieces placed and/or moved on it	


“Perfect information”: no hidden data, no randomness	



Player I/Player II alternate turns	



Defined win/lose configurations (3-in-a-row; checkmate; …)	



Winning strategy: 	



∃move by player 1 ∀moves by II ∃ a move by I ∀… I wins.	



216	





Config:	



  Where are pieces	


  Relevant history	



  Who goes next	


Play:	



  All moves 	



       Game Tree	
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∃ 

∀ 

∃ 

∀ 

x	

 x	


x	



x	


o	

 x	

o	



x	


o	



x	


o	



x	

 o	



1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	





Config:	



  Where are pieces	


  Relevant history	



  Who goes next	


Play:	



  All moves 	



       Game Tree	
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∃ 

∀ 

∃ 

∀ 

x	


∧ x	



∧ x	

∧ 

x	


o	

∨ 

∨ 

x	

o	


x	



o	

∨ x	


o	

∨ x	

 o	



∨ ∨ 
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ 

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	





Config:	



  Where are pieces	


  Relevant history	



  Who goes next	


Play:	



  All moves 	



       Winning Strategy	
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∃ 

∀ 

∃ 

∀ 

x	


∧ x	



∧ x	

∧ 

x	


o	

∨ 

∨ 

x	

o	


x	



o	

∨ x	


o	

∨ x	

 o	



∨ ∨ 
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ 

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 0	

 1	

 1	

 1	

 1	

 1	

 0	

Win/lose:	





Complexity of 2 person, perfect 
information games	



From above, IF	



	

config (incl. history, etc.) is poly size	


	

only poly many successors of one config	



	

each computable in poly time	


	

win/lose configs recognizable in poly time, and	



	

game lasts poly # moves	



THEN	


	

in PSPACE!	



Pf: depth-first search of tree, calc node values as you go.	
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Lecture 28	



(None – Memorial Day)	
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Lecture 29	
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Config:	



  Where are pieces	


  Relevant history	



  Who goes next	


Play:	



  All moves 	



       Game Tree	
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∃ 

∀ 

∃ 

∀ 

x	

 x	


x	



x	


o	

 x	

o	



x	


o	



x	


o	



x	

 o	



1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	





Config:	



  Where are pieces	


  Relevant history	



  Who goes next	


Play:	



  All moves 	



       Game Tree	
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∃ 

∀ 

∃ 

∀ 

x	


∧ x	



∧ x	

∧ 

x	


o	

∨ 

∨ 

x	

o	


x	



o	

∨ x	


o	

∨ x	

 o	



∨ ∨ 
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ 

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	





Config:	



  Where are pieces	


  Relevant history	



  Who goes next	


Play:	



  All moves 	



       Winning Strategy	
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∃ 

∀ 

∃ 

∀ 

x	


∧ x	



∧ x	

∧ 

x	


o	

∨ 

∨ 

x	

o	


x	



o	

∨ x	


o	

∨ x	

 o	



∨ ∨ 
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ 

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 0	

 1	

 1	

 1	

 1	

 1	

 0	

Win/lose:	





Complexity of 2 person, perfect 
information games	



From above, IF	



	

config (incl. history, etc.) is poly size	


	

only poly many successors of one config	



	

each computable in poly time	


	

win/lose configs recognizable in poly time, and	



	

game lasts poly # moves	



THEN	


	

in PSPACE!	



Pf: depth-first search of tree, calc node values as you go.	
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A Game About Paths: ���
Which Player Has A Winning Strategy?	



Given: digraph G with 2n + 1 vertices, movable markers s, t 
on two vertices	



Outline: 	


	

Player I : “I have a path (from s to t)”	



	

Player II: “I doubt it”	


Play alternates, starting with player I:	



	

Player I : places marker m on some node (“path goes thru m”)	


	

Player II: (s,t) ← (s,m) or (m,t)                 (“I doubt this half”)	



Ends after n rounds; Player I wins if s = t, or s → t is an edge	
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Winning The Path Game	



Player I has a winning strategy if there is an s-t path:	


	

Path has ≤ 2n edges; choosing middle vertex of that path for “m” in 
each round halves the remaining path length, so after n rounds, path 
length is ≤ 1, which is the “win” condition for Player 1.	



Player II has a winning strategy if there is no s-t path:	



	

If there is no s-t path, for every m, either there is no s-m path or no 
m-t path (or both).  In the former case, choose (s, m), else (m, t).  At 
termination, s ≠ t and s → t isn’t an edge.	



m	

s	

 t	


∃m∀halves, ���

is path	



m	

s	

 t	


∀m∃half, ���
no path	

m	

m	

 m	

 m	



m	





Game Tree	



2n levels	



Player I (∃) chooses among many possible “m” nodes	



Player II (∀) chooses left/right half	
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∃	



∀	



∃	



∀	



0/1	


1 1 1 1 

/Strategy	





Complexity & The Path Game 	



M: a space S(n) NTM.  WLOG, before accepting, M:	



-  erases tape	


-  goes to left end of tape	



So, there are unique init & accept configs, C0, Ca. 	



Digraph G:  	



-  Nodes: configs of M on fixed input x, 	



-  Edges: C → C’ iff M can move from config C to C’ in 1 step. 	



M accepts x iff there is a path from C0 to Ca in G	
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Savitch’s Theorem	



Theorem:	



	

NSPACE(S(n)) ⊆ DSPACE(S2(n))	



Pf:	


Accept iff Player I wins path game	



Game tree has height log(#configs) = O(S(n)) 	



	

Each node needs O(S(n)) bits to describe 2-3 configs (s,m,t)	


	

Can evaluate win/lose at each leaf by examining 2 configs	



	

So, evaluate tree in O(S2(n)) space.	
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Corollary:	



	

DetPSPACE = NondetPSPACE  (So we just say “PSPACE”)	



Analogous result for P-TIME is of course the famous P = NP 
question.	
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? 



TQBF ���
“True Quantified Boolean Formulas”	



TQBF = { ∃y1∀x1∃y2 … f | assignment x,y satisfies formula f }	



(each xi, yi may be one or many bits; doesn’t matter.)	



TQBF in PSPACE: think of it as a game between ∃, ∀; ∃ wins 
if formula satisfied.  Do DFS of game tree as in examples 
above, evaluating nodes (∧,∨) as you backtrack.	
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TQBF is PSPACE-complete���
“TQBF is to PSPACE as SAT is to NP”	



TQBF = { ∃y1∀x1∃y2 … f | assignment x,y satisfies formula f }	



Theorem: TQBF is PSPACE-complete	


Pf Idea:	



	

TQBF in PSPACE: above	


	

M an arbitrary nk space TM, show L(M)  ≤p TQBF: below	



yk: the nk-bit config “m” picked by ∃-player in round k���
xk: 1 bit; ∀-player chooses which half-path is challenged���
Formula f:  x’s select the appropriate pair of y configs; 
check that 1st moves to 2nd in one step (alá Cook’s Thm)	
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More Detail	



For “x selects a pair of y’s”, use the following trick:	


	

f1(s1,t1) =  ∃y1∀x1 g(s1,t1,y1,x1) 	



becomes	



	

∃y1∀x1 ∃s2,t2 [ ( x1  → (s2 = s1 ∧ t2 = y1)) ∧ 	


	

 	

 	

     (¬x1 → (s2 = y1 ∧ t2 = t1)) ∧ f2(s2,t2)  ]	



Here, x1 is a single bit; others represent nk-bit configs, and “=” 
means the ∧ of bitwise ↔ across all bits of a config	



The final piece of the formula becomes ∃z g(sk,tk,z), where ���
g(sk,tk,z), ~ as in Cook’s Thm, is true if config sk equals tk or 
moves to tk in 1 step according to M’s nondet choice z.	



A key point: formula is poly computable (e.g., poly length)	





“Geography”	
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“Generalized Geography”	
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TQBF ≤p ���
Generalized ���
Geography 	

∀ 

∃/∀ 

∃ 

∃ 1 

And so GGEO is 
PSPACE-complete	





∀ 

∃/∀ 

∃ 

∃ 
∃ 

∀ 

(if k even)	



∃ 

∃ 



SPACE: Summary	



Defined on TMs (as usual) but largely model-independent	



Time T ⊆ Space T ⊆ Time 2cT	



	

Cor: NP ⊆ PSPACE	



Savitch: Nspace(S) ⊆ Dspace(S2)	



	

Cor: Pspace = NPspace (!)	



TQBF is PSPACE-complete (analog: SAT is NP-complete)	



PSPACE and games (and games have serious purposes: auctions, 
allocation of shared resources, hacker vs firewall,…)	
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An Analogy	



NP is to PSPACE as Solitaire is to Chess	



I.e., NP probs involve finding a solution to a fixed, static puzzle 
with no adversary other than the structure of the puzzle itself	



PSPACE problems, of course, just plain use poly space.  But 
they often involve, or can be viewed as, games where an 
interactive adversary dynamically thwarts your progress 
towards a solution	



The former, tho hard, seems much easier than the later–part of 
the reason for the (unproven) supposition that NP ⊊ PSPACE	
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Lecture 30	



Review & Wrapup	
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Computability Theory	



See Midterm Review Slides	
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Real Computers are Finite	



Unbounded “memory” is critical to most undecidability pfs	



Real computers are finite: n bits of state (registers, cache, 
RAM, HD, …) ⇒ ≤ 2n configs – it’s a DFA!	



“Does M accept w” is decidable: run M on w; if it runs more 
that 2n steps, it’s looping. (Recall LBA pfs.)	



BUT:	


2n is astronomical: a modest laptop has n = 100’s of gigabits 
of state; # atoms in the universe ~ 2262 	
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Are “real” computer ���
problems undecidable?	



Options:	


100 G is so much >> 262, let’s say it’s approximately unbounded ⇒ 
undecidable	


Explore/quantify the “computational difficulty” of solving the 
(decidable) “bounded memory” problem	



1st is somewhat crude, but easy, and not crazy, given that we 
really don’t have methods that are fundamentally better for 
100Gb memories than for arbitrary algorithms	



2nd is more refined but harder; goal of next few weeks is to 
develop theory supporting such aims 	
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Time & Space Complexity	



Defined on TM’s but largely model-independent 	



	

(1-tape, multi-tape, RAMs, …)	


Esp. if we focus on asymptotic complexity, up to polynomials	



	

E.g. P, PSPACE	


For space, model-independence even extends to 

nondeterministic models	



For time, this is a major open problem	


	

E.g., does P = NP?	
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P	



Many important problems are in P: solvable in deterministic 
polynomial time	



	

Details are more the fodder of algorithms courses, but we’ve seen a 
few examples here, plus many other examples in other courses	



Few problems not in P are routinely solved; 	



	

For those that are, practice is usually restricted to small instances, or 
we’re forced to settle for approximate, suboptimal, or heuristic 
“solutions”	



A major goal of complexity theory is to delineate the 
boundaries of what we can feasibly solve	
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NP	



The tip-of-the-iceberg in terms of problems conjectured not 
to be in P, but a very important tip, because	



	

a) they’re very commonly encountered, probably because	


	

b) they arise naturally from basic “search” and 
“optimization” questions.	



Definition: poly time NTM	



Equivalent views: poly time verifiable, “guess and check”, “is 
there a…” – all useful	
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NP-completeness	



Defn & Properties of ≤p	



A is NP-hard: everything in NP reducible to A	



A is NP-complete: NP-hard and in NP	


	

“the hardest problems in NP”	



	

“All alike under the skin”	



Most known natural problems in NP are complete	


	

#1: 3CNF-SAT	



	

Many others: Clique, VertexCover, HamPath, Circuit-SAT,…	
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Beyond NP	



“Polynomial Hierarchy”: 	



	

Quantified Boolean formulas with fixed number of 
alternations of ∃, ∀	


	

Collapses if NP = co-NP	



	

Important in helping recognize variants of NP problems	


PSPACE	



Exponential Time	


Double-Exponential Time	



…	



254	





Complexity class relationships	



P ⊆ NP ∩ co-NP ⊆ NP ∪ co-NP ⊆ PSPACE ⊆ ExpTime	



NP ≠ co-NP ?	



All containments above proper ?	
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A taste of things we didn’t get to	



Resource-bounded Hierarchy Theorems:	



	

If t(n) << T(n) (e.g., limn→∞ t(n)/T(n) =0), then ���
DSPACE(t(n)) ⊊ DSPACE(T(n))	



	

Similar for DTIME, ( but fussier about “<<” )	


	

 	

E.g.: TIME(n) ⊊ TIME(n2) ⊊ TIME(n3) … 	



	

 	

P ⊊ TIME(2n) ⊊ TIME(3n) ⊊ … TIME(2n2) ⊊ TIME(22n)	



	

Method: diagonalization again	


NSPACE is closed under complementation 	



	

Is there an s-t path in G?	


	

Is there no s-t path in G?	
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Final Exam	



Monday, 2:30	



In this Classroom	


Two pages of notes allowed; otherwise closed book.	



Coverage: comprehensive 	


Sipser, Chapters 3, 4, 5;  7, 8.1-8.3	



Lectures	



Homework	



Some bias (~ 60/40) towards topics since midterm	





Thanks, and Good Luck!	
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