
Lecture 14	

1	

Real Computers are Finite	

Unbounded “memory” is critical to most undecidability pfs	

Real computers are finite: n bits of state (registers, cache,
RAM, HD, …) ⇒ ≤ 2n configs – it’s a DFA!	

“Does M accept w” is decidable: run M on w; if it runs more
that 2n steps, it’s looping. (Recall LBA pfs.)	

BUT:	

2n is astronomical: a modest laptop has n = 100’s of gigabits
of state; # atoms in the universe ~ 2262 	

2	

Are “real” computer ���
problems undecidable?	

Options:	

100 G is so much >> 262, let’s say it’s approximately unbounded ⇒
undecidable	

Explore/quantify the “computational difficulty” of solving the
(decidable) “bounded memory” problem	

1st is somewhat crude, but easy, and not crazy, given that we
really don’t have methods that are fundamentally better for
100Gb memories than for arbitrary algorithms	

2nd is more refined but harder; goal of next few weeks is to
develop theory supporting such aims 	

3	

Measuring “Compute Time” 	

TM: simple, just count steps	

Defn: If M is a TM deciding L, the time complexity of M is the
function T(n) such that T(n) is the max number of steps
taken by M on any input w ∈ Σ* of length n. 	

Why as a function of n? Mainly to smooth and summarize 	

Loosely, the time complexity of L is the least such T over all M
deciding L.	

(I say “loosely” because it may be that no one M is fastest on all inputs,
but nevertheless we may be able to bound it.)	

4	

Example: L = { anbn | n ≥ 0 }���
(on a One-Tape TM)	

A simple algorithm (zig-zag, cross off letters): T(n) = ~n2	

Somewhat trickier: cross of 5 letters at a time: T(n) = ~n2/5	

A more complex algorithm: 	

 On a “two-track” tape, drag along a binary counter: T(n) = ~n log2n	

Slightly more work:	

 As above, but a decimal counter: T(n) = ~n log10n	

More work still:	

 As above, but use lots of states to count off 1st ten million a’s & b’s:	

 T(n) = ~ if (n <107) then n else n log10n	

One conclusion: 	

Focus on growth rate, not const or small n. I.e., big-O	

5	

Complexity Classes	

Defn:	

TIME(T(n)) = the set of languages decidable by single-tape
TMs in time O(T(n))	

E.g. { anbn | n ≥ 0 } ∈ TIME(n log n)	

6	

Example: L = { anbn | n ≥ 0 }���
(on a Two-Tape TM)	

Counter on tape 2; +1 for every a; -1 for every b	

Time: O(n) – faster than best 1-tape TM for L	

(Analysis is a bit subtle. “+1/-1” take log n steps in worst
case, but “carries/borrows” usually don’t propagate very far.
Can prove amortized cost of +1/-1 is only O(1) per
operation.)	

One Conclusion: “Time” is somewhat technology-sensitive	

(In fact, gap between 1 tape and 2 is quadratic: {ww|w ∈ Σ*})	

7	

“Tapes are Lame”	

Obviously, “real” computers have essentially constant-time
access to any bit of memory, not sequential access as on a
tape	

Fast “random access” will allow faster algorithms for many
problems, so time on a TM may seem a poor surrogate for
time on real computers	

How poor?	

8	

A Model of a “Real Computer”	

“Random Access Machines” (RAMs)	

Memory is an array	

Unit time access to any word	

Basic, unit time ops like +, -, *, /, test-if-zero,…	

Programs	

For comparison to TMs, perhaps have read-only “input tape”
or other string-oriented input convention and special
“accept/reject” operations. Program typically not in memory
(but could be)	

9	

TM-time(T) ⊆ RAM-time(T) ���
RAM-time(T) ⊆ TM-time(T3)	

Proof: look at your homework #1 and see how long your
simulations took.	

TM by RAM is quick	

RAM by TM is slower, but cubic is conservative. In time T,
the RAM can touch at most T memory words, each word
holds at most T bits, it takes time at most T2 to slog through
tape to fetch/store a word, etc. 	

10	

A Church-Turing thesis for “time”?	

Church-Turing thesis: all “reasonable” models of
computation are equivalent – i.e. all give the same set of
decidable problems	

“Extended” Church Turing thesis: All “reasonable” models of
computation are equivalent up to a polynomial difference in
time complexity	

E.g. from above, this is true of deterministic singe- and multi-
tape TMs and RAMs	

More on what “reasonable” means later…	

11	

12	

The class P	

Definition: 	

P = ∪k≥1 TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in polynomial time. I.e., L ∈ P iff there is
an algorithm deciding L in time T(n) = O(nk) for
some fixed k (i.e., k is independent of the input).	

Examples: sorting, shortest path, MST, connectivity,
… 	

Why “Polynomial”?	

Point is not that n2000 is a nice time bound, or that the
differences among n and 2n and n2 are negligible.	

Rather, simple theoretical tools may not easily capture such
differences, whereas exponentials are qualitatively different
from polynomials and may be amenable to theoretical
analysis.	

“My problem is in P” is a starting point for a more detailed analysis	

“My problem is not in P” may suggest that you need to shift to a more
tractable variant 	

13	

14	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	

15	

Complexity Increase E.g. T=1012

O(n) n0  2n0 1012 2 x 1012

O(n2) n0  √2 n0 106 1.4 x 106

O(n3) n0  3√2 n0 104 1.25 x 104

2n /10 n0  n0+10 400 410
2n n0  n0 +1 40 41

Another view of Poly vs Exp	

Next year's computer will be 2x faster. If I can
solve problem of size n0 today, how large a problem
can I solve in the same time next year? 	

Lecture 15	

16	

Some notes on HW #4���

17	

18	

19	

20	

More on P vs NP	

21	

22	

23	

Lecture 16	

24	

Complexity Classes	

Defn:	

TIME(T(n)) = the set of languages decidable by single-tape
TMs in time O(T(n))	

E.g. { anbn | n ≥ 0 } ∈ TIME(n log n)	

25	

A Church-Turing thesis for “time”?	

Church-Turing thesis: all “reasonable” models of
computation are equivalent – i.e. all give the same set of
decidable problems	

“Extended” Church Turing thesis: All “reasonable” models of
computation are equivalent up to a polynomial difference in
time complexity	

E.g. from above, this is true of deterministic singe- and multi-
tape TMs and RAMs	

More on what “reasonable” means later…	

26	

27	

The class P	

Definition: 	

P = ∪k≥1 TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in polynomial time. I.e., L ∈ P iff there is
an algorithm deciding L in time T(n) = O(nk) for
some fixed k (i.e., k is independent of the input).	

Examples: sorting, shortest path, MST, connectivity,
… 	

28	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	

Nondeterministic Time	

Given a nondeterministic TM M that
always halts, its run time T(n) is the
length of the longest computation path
(accepting or rejecting) on any input of
length n.	

(In fact, the theory doesn’t change much if you
make it “shortest accepting path”, but that’s just
a detail.) 	

30	

T(n)!

31	

The class NP	

Definition: 	

NP = ∪k≥1Nondeterministic-TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in Nondeterministic polynomial time. I.e.,
L ∈ NP iff there is a nondeterministic algorithm
deciding L in time T(n) = O(nk) for some fixed k
(i.e., k is independent of the input).	

Ex: sorting, shortest path, …, and (probably) more! 	

32	

T(n)!

2cT(n)!

accept

NTIME(T) ⊆ DTIME(2O(T))	

Theorem: Every problem
solvable in nondeterministic
time T(n) can be solved
deterministically in time
exponential in T(n)	

Proof:	

As before, do breadth first
simulation. (Depth-first
works too.)	

33	

The Clique Problem	

Given: a graph G=(V,E) and an integer k	

Question: is there a subset U of V with���
|U| ≥ k such that every pair of vertices in U is joined by an
edge.	

34	

"Problem" – the general case	

Ex: The Clique Problem: Given a graph G and an integer k,
does G contain a k-clique?	

"Problem Instance" – the specific cases	

Ex: Does contain a 4-clique? (no)	

Ex: Does contain a 3-clique? (yes)	

Decision Problems – Just Yes/No answer	

Problems as Sets of "Yes" Instances	

Ex: CLIQUE = { (G,k) | G contains a k-clique }	

E.g., (, 4) ∉ CLIQUE	

E.g., (, 3) ∈ CLIQUE	

Some Convenient Technicalities	

35	

Satisfiability	

Boolean variables x1, ..., xn	

taking values in {0,1}. 0=false, 1=true	

Literals	

xi or ¬xi for i = 1, ..., n	

Clause	

a logical OR of one or more literals	

e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	

CNF formula (“conjunctive normal form”)	

a logical AND of a bunch of clauses	

36	

Satisfiability	

CNF formula example	

(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)	

If there is some assignment of 0’s and 1’s to the
variables that makes it true then we say the formula
is satisfiable	

the one above is, the following isn’t	

x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3���

Satisfiability: Given a CNF formula F, is it satisfiable?	

37	

Satisfiable?	

(

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 ¬z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

(

 ¬x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 ¬z	

)	

(

 x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 ¬z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 ¬x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

(

 ¬x	

 ∨	

 ¬y	

 ∨	

 ¬z	

)	

 ∧	

 (

 ¬x	

 ∨	

 y	

 ∨	

 z	

)	

 ∧	

(

 x	

 ∨	

 ¬y	

 ∨	

 z	

)	

 ∧	

 (

 x	

 ∨	

 y	

 ∨	

 ¬z	

)	

38	

Common property of these problems: ���
Discrete Exponential Search���

 Loosely–find a needle in a haystack	

“Answer” is literally just yes/no, but there’s always a
somewhat more elaborate “solution” (aka “hint” or
“certificate”) that transparently‡ justifies each “yes”
instance (and only those) – but it’s buried in an
exponentially large search space of potential solutions. 	

‡Transparently = verifiable in polynomial time	

Lecture 17	

Midterm review	

41	

Lecture 18	

Midterm	

42	

Lecture 19	

43	

44	

The class NP	

Definition: 	

NP = ∪k≥1Nondeterministic-TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in Nondeterministic polynomial time. I.e.,
L ∈ NP iff there is a nondeterministic algorithm
deciding L in time T(n) = O(nk) for some fixed k
(i.e., k is independent of the input).	

Alternate Views of Nondeterminism	

NTM – there is a path…	

Parallel – make the tree	

Search – look for a path (or sat-ing assignment or clique or…) 	

Guess and Check	

Polynomial Verifier	

45	

47	

Alternate Way To Define NP	

A language L is polynomially verifiable iff there is a polynomial
time procedure v(-,-), (the “verifier”) and an integer k such
that 	

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	

for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	

(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings.)	

Equivalently:	

There is some integer k and language Lv in P s.t.: 	

 L = { x | ∃y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv }	

Example: Clique	

“Is there a k-clique in this graph?”	

any subset of k vertices might be a clique	

there are many such subsets, but I only need to find one	

if I knew where it was, I could describe it succinctly, e.g.
"look at vertices 2,3,17,42,...", 	

I'd know one if I saw one: "yes, there are edges between ���
2 & 3, 2 & 17,... so it's a k-clique”	

this can be quickly checked	

And if there is not a k-clique, I wouldn’t be fooled by a
statement like “look at vertices 2,3,17,42,...” 	

48	

49	

More Formally: CLIQUE is in NP	

procedure v(x,h)	

if 	

 x is a well-formed representation of a graph ���
 G = (V, E) and an integer k, 	

and 	

 h is a well-formed representation of a k-vertex ���
 subset U of V, 	

and 	

	

U is a clique in G, 	

then output "YES"	

else output "I'm unconvinced" 	

50	

Is it correct?	

For every x = (G,k) such that G contains a k-clique,
there is a hint h that will cause v(x,h) to say YES,
namely h = a list of the vertices in such a k-clique	

and	

No hint can fool v into saying yes if either x isn't
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any cliques of size k (the
interesting case)	

The 2 defns are equivalent	

Theorem: L in NP iff L is polynomially verifiable	

Pf: ⇒ Let M be a poly time NTM for L, x an input to M, |x| =
n. If x in L there is an accepting computation history y for
M on x. If M runs T = nO(1) steps on x, then y is T+1
configs, each of length ~T, so |y| = O(T2) = nO(1).
Furthermore, a deterministic TM can check that y is an
accepting history of M on x in poly time. Critically, if x is
not accepted, no y will pass this check. Thus, L is poly
time verifiable. ���
(We could equally well let y encode the sequence of nondeterministic
choices M makes along some accepting path.)	

51	

The 2 defns are equivalent (cont.)	

Theorem: L in NP iff L is polynomially verifiable	

Pf: ⇐ Suppose L is poly time verifiable, V is a time nd -time
TM implementing the verifier, and k is the exponent in the
hint length bound. Consider this TM:	

M: on input x, nondeterministically choose a string y of
length at most |x|k, then run V on ⟨x,y⟩; accept iff it does.	

Then M is an NTM accepting L: By defn of poly verifier���
x ∈ L iff ∃y, |y| ≤ |x|k ⋀ V accepts 〈x,y〉, and M tries
(nondeterministically) all such y’s, accepting iff it finds one
that V accepts.	

Time bound for M: ??	

52	

(|x|+|x|k+3)d = O(nkd) = nO(1)	

Example: SAT	

“Is there a satisfying assignment for this Boolean
formula?”	

any assignment might work 	

there are lots of them 	

I only need one 	

if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T" 	

I'd know one if I saw one: "yes, plugging that in, I see formula = T...”
this can be quickly checked	

And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T,
x2=F, ..., xn=F" 	

53	

54	

More Formally: SAT ∈ NP	

Hint: the satisfying assignment A	

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	

Syntax: True iff F is a well-formed formula & A is a truth-
assignment to its variables	

Satisfies: plug A into F and evaluate	

Correctness:	

If F is satisfiable, it has some satisfying assignment A, and
we’ll recognize it	

If F is unsatisfiable, it doesn’t, and we won’t be fooled	

Alternate Views of Nondeterminism	

NTM – there is a path…	

Parallel – make the tree	

Search – look for a path (or sat-ing assignment or clique or…) 	

Guess and Check	

Polynomial Verifier	

55	

56	

The complexity class NP	

NP consists of all decision problems where 	

You can verify the YES answers efficiently (in polynomial
time) given a short (polynomial-size) hint	

And	

No hint can fool your polynomial time verifier into saying
YES for a NO instance	

(implausible for all exponential time problems)	

one among exponentially many;
know it when you see it!

57	

Keys to showing that ���
a problem is in NP	

What's the output? (must be YES/NO)	

What's the input? Which are YES?	

For every given YES input, is there a hint that would help? Is
it polynomial length?	

OK if some inputs need no hint	

For any given NO input, is there a hint that would trick you?	

Example	

ATM is in NP	

Input: a pair <M,w>	

Output: yes/no does M accept w	

Hint: y, an accepting computation history of M on w	

Clearly, such a y exists for all accepted x and only accepted

x, so we accept the right x’s and reject the rest.	

And it’s fast – checking successive configs in the history is at
worst quadratic in the length of the history, so the verifier
for <x,y> runs in time |<x,y>|O(1).	

58	

FALSE	

Lecture 20	

59	

60	

P and NP	

Definition: 	

P = ∪k≥1 TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in polynomial time. 	

NP = ∪k≥1Nondeterministic-TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in Nondeterministic polynomial time. 	

61	

Alternate Definition of NP	

A language L is polynomially verifiable iff there is a polynomial
time procedure v(-,-), (the “verifier”) and an integer k such
that 	

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	

for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	

(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings.)	

Equivalently:	

There is some integer k and language Lv in P s.t.: 	

 L = { x | ∃y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv }	

Example	

ATM is in NP	

Input: a pair <M,w>	

Output: yes/no does M accept w	

Hint: y, an accepting computation history of M on w	

Clearly, such a y exists for all accepted x and only accepted

x, so we accept the right x’s and reject the rest.	

And it’s fast – checking successive configs in the history is at
worst quadratic in the length of the history, so the verifier
for <x,y> runs in time |<x,y>|O(1).	

62	

FALSE	

Example	

ATM is in NP	

Input: a pair <M,w>	

Output: yes/no does M accept w	

Hint: y = 0 or 1, depending on whether M accepts w	

Clearly, such a y exists, so we accept the right x’s and reject

the rest.	

And it’s really fast – just read the bit and accept/reject.	

63	

FALSE	

64	

nk!

2nk!

accept

Needle
in the

haystack

P vs NP vs Exponential Time	

Theorem: Every problem in
NP can be solved
deterministically in
exponential time	

Proof: “hints” are only nk
long; try all 2nk possibilities,
say by backtracking. If any
succeed, say YES; if ���
all fail, say NO.	

65	

NP!

P!

Exp!
Worse…

P and NP	

Every problem in P is in NP	

one doesn’t even need a hint for
problems in P so just ignore any
hint you are given	

Every problem in NP is in
exponential time	

I.e., P ⊆ NP ⊆ Exp	

We know P ≠ Exp, so either
P ≠NP, or NP ≠ Exp (most
likely both)	

Problems	

Short Path:	

 4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with
vertices s, t, and an integer k, for which there is a path from
s to t of length ≤ k	

Long Path:	

 4-tuples ⟨G, s, t, k⟩, where G=(V,E) is a digraph with
vertices s, t, and an integer k, for which there is an acyclic
path from s to t of length ≥ k	

66	

Mostly Long Paths	

“Are the majority of paths from A to B long (>k)?”	

 Any path might work	

 There are lots of them	

 I only need one	

 If I knew one I could describe it ���
succinctly, e.g., "go from A to node���
2, then node 42, then ... ”	

 I'd know one if I saw one: "yes, I���
see an edge from A to 2 and from ���
2 to 42... and total length > k”	

 And if there isn’t a long path, I wouldn’t be fooled …	

69	

Yes!	

 No, this is a
collective
property of the
set of all paths in
the graph, and no
one path
overrules the rest	

70	

More Problems	

Independent-Set: 	

Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is
an integer, for which there is a subset U of V
with |U| ≥ k such that no two vertices in U are
joined by an edge.	

Clique: 	

Pairs ⟨G,k⟩, where G=(V,E) is a graph and k is
an integer k, for which there is a subset U of V
with |U| ≥ k such that every pair of vertices in U
is joined by an edge.	

71	

More Problems	

Euler Tour: 	

Graphs G=(V,E) for which there is a cycle traversing each
edge once.	

Hamilton Tour: 	

Graphs G=(V,E) for which there is a simple cycle of length
|V|, i.e., traversing each vertex once.	

TSP: 	

Pairs ⟨G,k⟩, where G=(V,E,w) is a a weighted graph and k is
an integer, such that there is a Hamilton tour of G with
total weight ≤ k.	

Generic Pattern in These Examples	

73	

Set of all x for which there is a y with some property P, and���
1) y isn’t too big (|y| ≤ |x|O(1)), and ���
2) the property is easy (poly time) to check (given x & y;
perhaps not easy at all given only x)	

“There is a” is a reflection of the quantifier characterization
of NP:	

L is in NP iff there is some integer k and language Lv in P s.t.: 	

 L = { x | ∃y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv }	

Some similar patterns that suggest
problems not in NP	

Rather than “there is a…” maybe it’s “no…” or “for all…”	

E.g.	

 UNSAT: “no assignment satisfies formula,” or ���

“for all assignments, formula is false”	

Or	

 NOCLIQUE: “every subset of k vertices is not a k-clique”	

These examples are in co-NP: complements of problems in
NP. (Quantifier characterization: ���
… L = { x | ∀y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv } …)	

NP == co-NP ? Unknown, but seems unlikely.	

74	

Some similar patterns that suggest
problems not in NP	

Rather than “there is a…” maybe it’s “…is the min (or max)…”	

E.g.	

	

MAXCLIQUE: k is the size of the largest clique in G	

Or	

	

MINTSP: k is the cost of the cheapest Ham cycle in G	

Again, they seem NP-like, but are probably “harder.” E.g., ���
not only do you need to prove existence of k-clique (a
problem in NP) you also need to prove absence of a ���
(k+1)-clique (a co-NP question) ���
Quantifier structure often: “… ∃y1∀y2 (y1 < y2 ⇒…)”	

75	

Some similar patterns that suggest
problems not in NP	

Rather than “there is a…” maybe it’s … something even
more complicated, like 	

•  the “mostly long paths” example above, 	

•  “there is an exponentially long string y with property P”, 	

•  some quantifier structure other than just ∃, such as ���
 “∃x1∀x2∃x3∀x4∃x5∀x6…formula(x1…xn) = True”	

•  or many other things	

Bottom line: ���
NP is a common, but not universal, problem pattern	

76	

2 Final Points About “Hints” 	

1.  Hints/verifiers aren’t unique. The “… there is a …”
framework often suggests their form, but many
possibilities	

	

“is there a clique” could be verified from its vertices, or its edges, or
all but 3 of each, or all non-vertices, or… Details of the hint string
and the verifier and its time bound shift, but same bottom line	

2. In NP doesn’t prove its hard	

	

“Short Path” or “Small spanning tree” can be formulated as “…there
is a…”, but, due to very special structure of these problems, we can
quickly find the solution even without a hint. The mystery is whether
that’s possible for the other problems, too.	

77	

Lecture 21	

78	

Review from previous lecture	

P ⊆ NP ⊆ Exp; at least one containment is proper	

Examples in NP:	

	

SAT, short/long paths, Euler/Ham tours, clique, indp set…	

Common feature:	

	

“… there is a …”	

(and some related problems do not appear to share this
feature: UnSAT, maxClique, MostlyLongPaths, …)	

79	

Euler Tour	

2-SAT	

2-Coloring	

Min Cut	

Shortest Path	

80	

Hamilton Tour	

3-SAT	

3-Coloring	

Max Cut	

Longest Path	

Similar pairs; seemingly
different computationally!

Superficially different;
sim

ilar com
putationally!

Some Problem Pairs	

85	

The most obvious algorithm for most of these
problems is brute force:	

try all possible hints; check each one to see if it works.	

Exponential time:	

2n truth assignments for n variables	

n! possible TSP tours of n vertices	

 possible k element subsets of n vertices	

etc.	

…and to date, every alg, even much less-obvious
ones, are slow, too 	

⎟
⎠

⎞
⎜
⎝

⎛
k
n

Solving NP problems without hints	

86	

P vs NP	

Theory	

P = NP ?	

Open Problem!	

I bet against it	

Practice	

Many interesting, useful,
natural, well-studied
problems known to be
NP-complete	

With rare exceptions, no
one routinely succeeds in
finding exact solutions to
large, arbitrary instances	

98	

Another NP problem: ���
Vertex Cover	

Input: Undirected graph G = (V, E), integer k.	

Output: True iff there is a subset C of V of ���
size ≤ k such that every edge in E is incident to at
least one vertex in C.	

Example: Vertex cover of size ≤ 2.	

In NP? Exercise	

100	

3SAT ≤p VertexCover 	

101	

3SAT ≤p VertexCover 	

102	

3SAT ≤p VertexCover 	

103	

k=6

3SAT ≤p VertexCover 	

104	

k=6

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)	

105	

f =	

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	

106	

k=6

3SAT ≤p VertexCover 	

107	

Correctness of “3SAT ≤p VertexCover”	

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-cover; does not try to find satisfying assignment or cover.	

Correctness:	

 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward. 	

 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add other
2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle
edges; only true literals (but perhaps not all true literals) uncovered, so at least
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial)
truth assignment since no (x, ¬x) pair uncovered. It satisfies c since there is one
uncovered node in each clause triangle (else some other clause triangle has > 1
uncovered node, hence an uncovered edge.)	

Lecture 22	

108	

109	

k=6

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)	

110	

f =	

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	

111	

Correctness of “3SAT ≤p VertexCover”	

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-cover; does not try to find satisfying assignment or cover.	

Correctness:	

 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward. 	

 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add other
2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle
edges; only true literals (but perhaps not all true literals) uncovered, so at least
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial)
truth assignment since no (x, ¬x) pair uncovered. It satisfies c since there is one
uncovered node in each clause triangle (else some other clause triangle has > 1
uncovered node, hence an uncovered edge.)	

112	

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	

Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	

Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES,
y has a vertex cover of the given size”	

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
VertexCover either.	

113	

“3SAT ≤p VertexCover” Retrospective	

Previous slide: two suppositions	

Somewhat clumsy to have to state things that way.	

Alternative: abstract out the key elements, give it a name
(“polynomial time mapping reduction”), then properties like
the above always hold. 	

119	

Polynomial-Time Reductions	

Definition: Let A and B be two problems.	

We say that A is polynomially (mapping) reducible to
B (A ≤p B) if there exists a polynomial-time
algorithm f that converts each instance x of problem
A to an instance f(x) of B such that: ���

x is a YES instance of A iff f(x) is a YES instance of B	

x ∈ A ⇔ f(x) ∈ B 	

120	

polynomial

W
hy

 th
e

no
ta

tio
n?

Polynomial-Time Reductions (cont.)	

Define: A ≤p B “A is polynomial-time reducible to
B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B 	

“complexity of A” ≤ “complexity of B” + “complexity of f”	

(1) A ≤p B and B ∈ P ⇒ A ∈ P 	

(2) A ≤p B and A ∉ P ⇒ B ∉ P 	

(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)	

122	

Two definitions of “A ≤p B”	

Some books use more general defn: “could solve A
in poly time, if I had a poly time subroutine for B.”	

Defn on previous slides is special case where you
only get to call the subroutine once, and must
report its answer.	

This special case is used in ~98% of all reductions
(And is the only one used in Ch 7, I think.)	

K
ar

p

C

oo
k	

124	

NP-Completeness	

Definition: Problem B is NP-hard if
every problem in NP is polynomially
reducible to B.	

Definition: Problem B is NP-complete
if:	

(1) B belongs to NP, and 	

(2) B is NP-hard.	

NP!

P!

Exp!

NP-Hard	

NP-Complete	

Lecture 23	

125	

126	

polynomial

W
hy

 th
e

no
ta

tio
n?

Polynomial-Time Reductions (cont.)	

Define: A ≤p B “A is polynomial-time reducible to
B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B 	

“complexity of A” ≤ “complexity of B” + “complexity of f”	

(1) A ≤p B and B ∈ P ⇒ A ∈ P 	

(2) A ≤p B and A ∉ P ⇒ B ∉ P 	

(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)	

127	

NP-Completeness	

Definition: Problem B is NP-hard if
every problem in NP is polynomially
reducible to B.	

Definition: Problem B is NP-complete
if:	

(1) B belongs to NP, and 	

(2) B is NP-hard.	

NP!

P!

Exp!

NP-Hard	

NP-Complete	

“NP-completeness”	

Cool concept, but are there ���
any such problems?	

Yes!	

Cook’s theorem: SAT is NP-complete	

128	

Why is SAT NP-complete?	

Cook’s proof is somewhat involved; details later.
But its essence is not so hard to grasp:	

129	

Encode “solution” using Boolean variables. SAT mimics “is there a solution”
via “is there an assignment”. Digital computers just do Boolean logic, and
“SAT” can mimic that, too, hence can verify that the assignment actually
encodes a solution.	

Generic “NP” problem:	

is there a poly size “solution,”
verifiable by computer in poly time	

“SAT”:	

is there a (poly size) assignment
satisfying the formula

135	

Proving a problem is NP-complete	

Technically, for condition (2) we have to show that
every problem in NP is reducible to B. ���
(Yikes! Sounds like a lot of work.)	

For the very first NP-complete problem (SAT) this
had to be proved directly. 	

However, once we have one NP-complete problem,
then we don’t have to do this every time.	

Why? Transitivity.	

136	

Alt way to prove NP-completeness	

Lemma: Problem B is NP-complete if:	

(1) B belongs to NP, and 	

(2’) A is polynomial-time reducible to B, for some problem
A that is NP-complete.	

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to
B.	

138	

Ex: VertexCover is NP-complete	

3-SAT is NP-complete (shown by S. Cook)	

3-SAT ≤p VertexCover	

VertexCover is in NP (we showed this earlier)	

Therefore VertexCover is also NP-complete	

So, poly-time algorithm for VertexCover would give
poly-time algs for everything in NP	

139	

NP-complete problem: Clique	

Input: Undirected graph G = (V, E), integer k.	

Output: True iff there is a subset C of V of ���
size ≥ k such that all vertices in C are connected to
all other vertices in C.	

Example: 	

Clique of size ≥ 4	

In NP? Exercise	

140	

k=3

3SAT ≤p Clique 	

141	

k=3

3SAT ≤p Clique 	

142	

k=3

3SAT ≤p Clique 	

143	

k=3

3SAT ≤p Clique 	

144	

x1! x1! x3!

x2! ¬x2!

¬x3! ¬x3! ¬x1!

k=3

3SAT ≤p Clique 	

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)	

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

Clique Instance:!
–  K != q!
–  G!= (V, E)!
–  V != { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!
–  E != { ([i,j], [k,l]) | i ≠ k and yij ≠ ¬ykl }!

3SAT ≤p Clique 	

f 	

 	

 	

 =	

146	

Correctness of “3-SAT ≤p Clique”	

Summary of reduction function f: ���
Given formula, make graph G with column of nodes per clause, one node per
literal. Connect each to all nodes in other columns, except complementary
literals (x, ¬x). Output graph G plus integer k = number of clauses. Note: f does
not know whether formula is satisfiable or not; does not know if G has k-clique; does not
try to find satisfying assignment or clique.	

Correctness:	

Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward. 	

Show c in 3-SAT iff f(c)=(G,k) in Clique: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause. Show
corresponding nodes in G are k-clique. ���
(⇐) Given a k-clique in G, clique labels define a truth assignment; show it satisfies
c. Note: literals in a clique are a valid truth assignment [no “(x, ¬x)” edges] & k
nodes must be 1 per column, [no edges within columns]. 	

Example:	

3-SAT ≤p UndirectedHamPath	

(Note: this is not
the same as the
reduction given in
the book.)	

(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

x ∨ y	

¬x ∨ y	

 ¬x ∨ ¬y	

s	

 t	

¬x ¬y

x y

Ham Path Gadget	

X	

Many copies of this 12-node gadget, each with one or more edges
connecting each of the 4 corners to other nodes or gadgets (but no
other edges to the 8 “internal” nodes).	

Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as
shown); the other (by symmetry) 0→0’	

Pf: Note *: at 1st visit to any column, must next go to middle node in column, else
it will subsequently become an untraversable “dead end.” ���
WLOG, suppose enter at 1. By *, must then go down to 0. 2 cases:	

Case a: (top left) If next move is to right, then * forces path up, left is blocked, so
right again, * forces down, etc; out at 1’.	

Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’. * forces
next move to be up/down to the other of 0’/1’. Must then go left to reach the
2 middle columns, but there’s no exit from them. So case b is impossible.	

148	

1	

0	

1’	

0’	

0’	

1	

0	

1’	

Lecture 24	

149	

Example:	

3-SAT ≤p UndirectedHamPath	

(Note: this is not
the same as the
reduction given in
the book.)	

(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

x ∨ y	

¬x ∨ y	

 ¬x ∨ ¬y	

s	

 t	

¬x ¬y

x y

3-SAT ≤p UndirectedHamPath	

Time for the reduction: to be computable in poly time it is necessary (but
not sufficient) that G’s size is polynomial in n, the length of the formula.
Easy to see this is true, since G has q + 12 (p + m) + 1 = O(n) vertices,
where q is the number of clauses, p is the number of instances of literals,
and m is the number of variables. Furthermore, the structure is simple
and regular, given the formula, so easily / quickly computable, but details
are omitted. (More detail expected in your homeworks, e.g.)	

151	

x ∨ y	

¬x ∨ y	

 ¬x ∨ ¬y	

s	

 t	

¬x ¬y

y x

Ham Path Gadget	

X	

Many copies of this 12-node gadget, each with one or more edges
connecting each of the 4 corners to other nodes or gadgets (but no
other edges to the 8 “internal” nodes).	

Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as
shown); the other (by symmetry) 0→0’	

Pf: Note *: at 1st visit to any column, must next go to middle node in column, else
it will subsequently become an untraversable “dead end.” ���
WLOG, suppose enter at 1. By *, must then go down to 0. 2 cases:	

Case a: (top left) If next move is to right, then * forces path up, left is blocked, so
right again, * forces down, etc; out at 1’.	

Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’. * forces
next move to be up/down to the other of 0’/1’. Must then go left to reach the
2 middle columns, but there’s no exit from them. So case b is impossible.	

152	

1	

0	

1’	

0’	

0’	

1	

0	

1’	

Correctness, I	

Ignoring the clause nodes, there are 2m s-t paths along the
“main chain,” one for each of 2m assignments to m variables.	

If f is satisfiable, pick a satisfying assignment, and pick a true
literal in each clause. Take the corresponding “main chain”
path; add a detour to/from ci for the true literal chosen from
clause i. Result is a Hamilton path.	

153	

…∨ xk ∨…	

xk=T	

xk chosen in clause ci 	

x ∨ y	

¬x ∨ y	

 ¬x ∨ ¬y	

s	

 t	

¬x ¬y

y x

Correctness, II	

Conversely, suppose G has a Ham path. Obviously, the path must
detour from the main chain to each clause node ci. If it does not return
immediately to the next gadget on main chain, then (by gadget properties
on earlier slide), that gadget cannot be traversed. Thus, the Ham path
must consistently use “top chain” or consistently “bottom chain” exits to
clause nodes from each variable gadget. If top chain, set that variable
True; else set it False. Result is a satisfying assignment, since each clause
is visited from a “true” literal.	

154	

Detour only possible
on an xk=T subpath	

X	

xk=T	

 And must immediately return	

x ∨ y	

¬x ∨ y	

 ¬x ∨ ¬y	

s	

 t	

¬x ¬y

y x

…∨ xk ∨…	

Subset-Sum, AKA Knapsack	

KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C }	

wi’s and C encoded in radix r ≥ 2. (Decimal used in
following example.)	

Theorem: 3-SAT ≤p KNAP	

Pf: given formula with p variables & q clauses, build KNAP instance with ���

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal”
weights, H.O. p digits mark which variable; L.O. q digits show which
clauses contain it. Two “slack” weights per clause mark that clause. ���
See example below.	

155	

3-SAT ≤p KNAP	

Variables	

 Clauses	

x	

 y	

 (x ∨ y) 	

 (¬x ∨ y) 	

 (¬x ∨ ¬y) 	

Li
te

ra
ls
	

 w1 (x)	

 1	

 0	

 1	

 0	

 0	

w2 (¬x) 	

 1	

 0	

 0	

 1	

 1	

w3 (y)	

 1	

 1	

 1	

 0	

w4 (¬y)	

 1	

 0	

 0	

 1	

Sl
ac

k	

w5 (s11)	

 1	

 0	

 0	

w6 (s12)	

 1	

 0	

 0	

w7 (s21)	

 1	

 0	

w8 (s22)	

 1	

 0	

w9 (s31)	

 1	

w10 (s32)	

 1	

C	

 1	

 1	

 3	

 3	

 3	

156	

Formula: (x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

Correctness	

Poly time for reduction is routine; details omitted	

If formula is satisfiable, select the literal weights corresponding to the

true literals in a satisfying assignment. If that assignment satisfies k
literals in a clause, also select (3 – k) of the “slack” weights for that
clause. Total will equal C.	

Conversely, suppose KNAP instance has a solution. Note ≤ 5 one’s per
column, so no “carries” in sum (recall – weights are decimal); i.e.,
columns are decoupled. Since H.O. p digits of C are 1, exactly one of
each pair of literal weights included in the subset, so it defines a valid
assignment. Since L.O. q digits of C are 3, but at most 2 “slack”
weights contribute to it, at least one of the selected literal weights
must be 1 in that clause, hence the assignment satisfies the formula.	

157	

Lecture 25	

158	

As a supplement to Paul Beame’s guest lecture, here are a
few slides of mine on roughly the same topics. Again, this
won’t be exactly the same as what he did or as what’s in the
book, but hopefully another perspective will help clarify it all.	

159	

Boolean Circuits	

Directed acyclic graph	

Vertices = Boolean logic gates (∧, ∨, ¬, …)!
Multiple input bits (x1, x2, …)	

Single output bit (w)	

Gate values as expected (e.g. by induction on depth to xi’s)	

160	

∧! ¬! ∨!
x1!

x2!

w!

Boolean Circuits	

Two Problems:	

	

Circuit Value: given a circuit and an assignment of ���
values to its inputs, is its output = 1?	

	

Circuit SAT: given a circuit, is there an assignment of
values to its inputs such that output = 1? 	

161	

∧! ¬! ∨!
x1!

x2!

w!

Boolean Circuits and Complexity	

Two Problems:	

	

Circuit Value: given a circuit and an assignment of ���
values to its inputs, is its output = 1?	

	

Circuit SAT: given a circuit, is there an assignment of
values to its inputs such that output =1? 	

Complexity:	

	

Circuit Value Problem is in P	

	

Circuit SAT Problem is in NP	

Given implementation of computers via Boolean circuits, it
may be unsurprising that they are complete in P/NP, resp.	

162	

∀ L ∈ P, L ≤p CVP 	

Let M be a 1-tape, poly time TM. WLOG M accepts at left end of tape.
“History” of M on input x:	

173	

 T = nk	

T
 =

 n
k	

a b q,c

q’,b

Every cell in tableau is a simple, discrete
function of 3 above it, e.g., if δ(q,c) = (q’,e,-1):	

b q,c d

e

Bool encoding of cell content; fixed circuit
computes new cell; replicate it across tableau	

← x →	

qaccept?	

Some Details	

For q ∈ Q, a ∈ Γ,1 ≤ i,j ≤ T, let 	

	

state(q,i,j) = 1if M in state q at time i w/ head in tape cell j, and���
letter(a,i,j) = 1 if tape cell j holds letter a at time i.	

writes(i,j) = ∨q ∈ Q state(q,i,j)	

letter(b,i,j) = (¬writes(i,j) ⋀ bi-1,j) ⋁ 	

 (writes(i,j) ⋀ ∨(q,a) state(q,i-1,j) ⋀ letter(a,i-1,j)) ���
 where the “or” is over {(q,a) | (-,b,-) = δ(q,a)} 	

state(p,i,j) = ∨(q,a,d) state(q,i-1,j-d) ⋀ letter(a,i-1,j-d), ���
 where the “or” is over {(q,a,d) | (p,-,d) = δ(q,a)} , d = ±1	

Row 0: initial config; columns -1,T+1: all false	

Output: state(qaccept,T,1)	

174	

Again, not exactly the
version in the book,
but close in spirit…	

write cell i @ step j	

no head, no change���

“or” configs writing “b”	

“or” configs entering p	

Result is something vaguely like this:	

175	

Similarly: ∀L∈NP, L ≤p Circuit-SAT 	

Let M be a 1-tape, poly time NTM. WLOG M accepts at left end of tape.
“History” of M on input x:	

176	

nk	

nk
	

a b q,c

q’,b

Every cell in tableau is a simple, discrete
function of 3 above it, plus 1 ND choice bit;
e.g., if (q’,e,L) ∈ δ(q,c) :	

b q,c d

e

Bool encoding of cell content; fixed circuit
computes new cell; replicate it across tableau	

qaccept?	

N
D

 b
its
	

← x →	

Choice 1	

TM input → circuit constants; ���
circuit inputs are the choice bits; ���
circuit is satisfiable iff ∃ seq of choices s.t. NTM accepts	

Additionally, assume NTM has only 2 nondet choices at each step.	

For q ∈ Q, a ∈ Γ,1 ≤ i,j ≤ T, state(q,i,j), letter(a,i,j) as before. Let	

	

choice(i) = 0/1define which ND choice M makes at step i 	

Then, letter() and state() circuits change to incl choice, e.g.:	

state(p,i,j) = ¬choice(i-1) ⋀ (∨(q,a,d) state(q,i-1,j-d) ⋀ letter(a,i-1,j-d)) ⋁	

 choice(i-1) ⋀ (∨(q’,a’,d’) state(q’,i-1,j-d’) ⋀ letter(a’,i-1,j-d’)) , ���
 where the “ors” are over 	

	

 	

 	

{(q,a,d) | (p,-,d) = δ(q, a, choice=0)} ,	

	

 	

 	

{(q’,a’,d’) | (p,-,d’) = δ(q’, a’, choice=1)} , d = ±1	

AND	

Some Details	

177	

Correctness	

Poly time reduction: 	

	

Given δ, key subcircuit is fixed, size O(1). Calculate n =
input length, T = nk. Circuit has O(T2) = O(n2k) copies of
that subcircuit, (plus some small tweaks at boundaries). 	

Circuit exactly reflects M’s computation, given the choice
sequence. So, if M accepts input x, then there is a choice
sequence s.t. circuit will output 1, i.e., the circuit is
satisfiable. Conversely, if the circuit is satisfiable, then any
satisfying input constitutes a choice sequence leading M to
accept x.	

Thus, Circuit-SAT is NP-complete.	

178	

179	

(w1⇔(x1∧x2))∧(w2⇔(¬w1))∧(w3⇔(w2∨x1))∧w3	

Replace with 3-CNF Equivalent:	

∧! ¬! ∨!
x1!

x2! w1! w2! w3!

Circuit-SAT ���
≤p 3-SAT	

x1	

 x2	

 w1	

 x1∧x2	

 ¬(w1⇔(x1∧x2))	

0	

 0	

 0	

 0	

 0	

0	

 0	

 1	

 0	

 1	

 ← ¬x1 ∧ ¬x2 ∧ w1	

0	

 1	

 0	

 0	

 0	

0	

 1	

 1	

 0	

 1	

 ← ¬x1 ∧ x2 ∧ w1	

1	

 0	

 0	

 0	

 0	

1	

 0	

 1	

 0	

 1	

 ← x1 ∧ ¬x2 ∧ w1	

1	

 1	

 0	

 1	

 1	

 ← x1 ∧ x2 ∧ ¬w1	

1	

 1	

 1	

 1	

 0	

¬clause
↓

 Truth Table
↓

 DNF
↓

 DeMorgan
↓

CNF

∧! ¬! ∨!f() = (x1∨x2∨¬w1)∧(x1∨¬x2∨¬w1)∧(¬x1∨x2∨¬w1)∧(¬x1∨¬x2∨w1)…	

Build truth table clause-by-clause vs whole formula, so n*23 vs 2n rows 	

180	

Correctness of “Circuit-SAT ≤p 3-SAT”	

Summary of reduction: Given circuit, add variable for every gate’s value,
build clause for each gate, satisfiable iff gate value variable is appropriate
logical function of its input variables, convert each to CNF via standard
truth-table construction. Output conjunction of all, plus output variable.
Note: as usual, does not know whether circuit or formula are satisfiable or not;
does not try to find satisfying assignment.	

Correctness:	

Show it’s poly time computable: A key point is that formula size is linear
in circuit size; mapping basically straightforward; details omitted. 	

Show c in Circuit-SAT iff f(c) in SAT: ���
(⇒) Given an assignment to xi’s satisfying c, extend it to wi’s by
evaluating the circuit on xi’s gate by gate. Show this satisfies f(c). ���
(⇐) Given an assignment to xi’s & wi’s satisfying f(c), show xi’s satisfy c
(with gate values given by wi’s).	

Thus, 3-SAT is NP-complete.	

Lecture 26	

181	

193	

Common Errors in ���
NP-completeness Proofs	

Backwards reductions	

Bipartiteness ≤p SAT is true, but not so useful. ���
(XYZ ≤p SAT shows XYZ in NP, doesn’t show it’s hard.)	

Sloooow Reductions 	

“Find a satisfying assignment, then output…”	

Half Reductions	

Delete clause nodes in HAM reduction. It’s still true that
“satisfiable ⇒ G has a Ham path”, but path doesn’t
necessarily give a satisfying assignment.	

194	

Coping with NP-Completeness	

Is your real problem a special subcase?	

E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto 3- vs 2-
coloring	

E.g. you only need planar graphs, or degree 3 graphs, …?	

Guaranteed approximation good enough?	

E.g. Euclidean TSP within 2 * Opt in poly time	

Fast enough in practice (esp. if n is small), 	

E.g. clever exhaustive search like backtrack, branch &
bound, pruning	

Heuristics – usually a good approximation and/or
usually fast	

195	

5

3

4 6

4 7
2

5

8

 Example:	

	

 b = 34	

NP-complete problem: TSP	

Input: An undirected graph
G=(V,E) with integer edge
weights, and an integer b.	

Output: YES iff there is a
simple cycle in G passing
through all vertices (once),
with total cost ≤ b.	

196	

€

limn→∞

NN
OPT

→∞

TSP - Nearest Neighbor Heuristic	

NN Heuristic –go to nearest unvisited vertex	

Fact: NN tour can be about (log n) x opt, i.e. ���

(above example is not that bad)	

199	

2x Approximation to EuclideanTSP	

A TSP tour visits all vertices, so contains a spanning tree, so
TSP cost is > cost of min spanning tree.	

Find MST	

Find “DFS” Tour	

Shortcut	

TSP ≤ shortcut < DFST = 2 * MST < 2 * TSP	

5

3

4

2
5

6

4 7

8

202	

NP!

P!

Exp!
Worse…

NP-C Summary	

Big-O – good	

P – good	

Exp – bad	

Exp, but hints help? NP	

NP-hard, NP-complete – bad (I bet)	

To show NP-complete – reductions	

NP-complete = hopeless? – no, but you ���
 need to lower your expectations: ���
 heuristics & approximations.	

205	

“I can’t find an efficient algorithm, but neither can all these
famous people.” [Garey & Johnson, 1979]

Beyond NP	

Many complexity classes are worse, e.g. time 22n
, 222n

, …	

Others seem to be “worse” in a different sense, e.g., not in
NP, but still exponential time. E.g., let 	

	

Lp = “assignment y satisfies formula x”, ∈ P	

Then :	

	

SAT = { x | ∃y ⟨x,y⟩∈LP }	

	

UNSAT = { x | ∀y ⟨x,y⟩∈LP }	

	

QBFk = { x | ∃y1∀y2∃y3… k ⟨x,y1…yk⟩∈LP }	

	

QBF∞ = { x | ∃y1∀y2∃y3… ⟨x,y1… ⟩∈LP }	

206	

Q	

Lecture 27	

207	

Beyond NP	

Many complexity classes are worse, e.g. time 22n
, 222n

, …	

Others seem to be “worse” in a different sense, e.g., not in
NP, but still exponential time. E.g., let 	

	

Lp = “assignment y satisfies formula x”, ∈ P	

Then :	

	

SAT = { x | ∃y ⟨x,y⟩∈LP }	

	

UNSAT = { x | ∀y ⟨x,y⟩∉LP }	

	

QBFk = { x | ∃y1∀y2∃y3… k yk ⟨x,y1…yk⟩∈LP }	

	

QBF∞ = { x | ∃y1∀y2∃y3… ⟨x,y1… ⟩∈LP }	

208	

Q	

ΣP2 : { x | ∃y∀z ⟨x,y,z⟩∈LP }

⋮

ΔP0:
P

The “Polynomial Hierarchy”	

ΔP1: P time
given SAT

ΣP1 (NP):
{ x | ∃y ⟨x,y⟩∈LP }
SAT, Clique, VC, HC, Knap,…

ΠP1
 (co-NP):

{ x | ∀y ⟨x,y⟩∈LP }
UNSAT,…

ΠP2
 : { x | ∀y∃z ⟨x,y,z⟩∈LP }

Potential Utility: It is often easy to give such a quantifier-based
characterization of a language; doing so suggests (but doesn’t prove) whether it

is in P, NP, etc. and suggests candidates for reducing to it.

Examples	

QBFk in ΣPk	

Given graph G, integers j & k, is there a set U of ≤ j vertices
in G such that every k-clique contains a vertex in U? 	

Given graph G, integers j & k, is there a set U of ≥ j vertices
in G such removal of any k edges leaves a Hamilton path
in U? 	

210	

Space Complexity	

DTM M has space complexity S(n) if it halts on all inputs, and
never visits more than S(n) tape cells on any input of
length n.	

NTM …on any input of length n on any computation path.	

DSPACE(S(n)) = { L | L acc by some DTM in space O(S(n)) }	

NSPACE(S(n)) = { L | L acc by some NTM in space O(S(n)) }	

211	

Model-independence	

As with Time complexity, model doesn’t matter much. E.g.:	

SPACE(n) on DTM ≈ O(n) bytes on your laptop	

Why? Simulate each by the other.	

212	

Space vs Time	

Time T ⊆ Space T	

	

Pf: no time to use more space	

Space T ⊆ Time 2cT	

	

Pf: if run longer, looping	

213	

Space seems more powerful	

Intuitively, space is reusable, time isn’t	

Ex.: SAT ∈ DSPACE(n)	

	

Pf: try all possible assignments, one after the other	

Even more: ���
QBFk = { ∃y1∀y2∃y3… k yk x | ⟨x,y1…yk⟩∈LP }∈ DSPACE(n) ���
QBF∞ = { ∃y1∀y2∃y3… x | ⟨x,y1… ⟩∈LP } ∈ DSPACE(n)	

214	

Q	

PSPACE = Space(nO(1))	

NP ⊆ PSPACE	

	

pf: depth-first search of NTM computation tree	

215	

Games	

2 player “board” games	

E.g., checkers, chess, tic-tac-toe, nim, go, …	

A finite, discrete “game board”	

Some pieces placed and/or moved on it	

“Perfect information”: no hidden data, no randomness	

Player I/Player II alternate turns	

Defined win/lose configurations (3-in-a-row; checkmate; …)	

Winning strategy: 	

∃move by player 1 ∀moves by II ∃ a move by I ∀… I wins.	

216	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Game Tree	

217	

∃

∀

∃

∀

x	

 x	

x	

x	

o	

 x	

o	

x	

o	

x	

o	

x	

 o	

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Game Tree	

218	

∃

∀

∃

∀

x	

∧ x	

∧ x	

∧

x	

o	

∨

∨

x	

o	

x	

o	

∨ x	

o	

∨ x	

 o	

∨ ∨
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Winning Strategy	

219	

∃

∀

∃

∀

x	

∧ x	

∧ x	

∧

x	

o	

∨

∨

x	

o	

x	

o	

∨ x	

o	

∨ x	

 o	

∨ ∨
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 0	

 1	

 1	

 1	

 1	

 1	

 0	

Win/lose:	

Complexity of 2 person, perfect
information games	

From above, IF	

	

config (incl. history, etc.) is poly size	

	

only poly many successors of one config	

	

each computable in poly time	

	

win/lose configs recognizable in poly time, and	

	

game lasts poly # moves	

THEN	

	

in PSPACE!	

Pf: depth-first search of tree, calc node values as you go.	

221	

Lecture 28	

(None – Memorial Day)	

222	

Lecture 29	

223	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Game Tree	

224	

∃

∀

∃

∀

x	

 x	

x	

x	

o	

 x	

o	

x	

o	

x	

o	

x	

 o	

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Game Tree	

225	

∃

∀

∃

∀

x	

∧ x	

∧ x	

∧

x	

o	

∨

∨

x	

o	

x	

o	

∨ x	

o	

∨ x	

 o	

∨ ∨
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Winning Strategy	

226	

∃

∀

∃

∀

x	

∧ x	

∧ x	

∧

x	

o	

∨

∨

x	

o	

x	

o	

∨ x	

o	

∨ x	

 o	

∨ ∨
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 0	

 1	

 1	

 1	

 1	

 1	

 0	

Win/lose:	

Complexity of 2 person, perfect
information games	

From above, IF	

	

config (incl. history, etc.) is poly size	

	

only poly many successors of one config	

	

each computable in poly time	

	

win/lose configs recognizable in poly time, and	

	

game lasts poly # moves	

THEN	

	

in PSPACE!	

Pf: depth-first search of tree, calc node values as you go.	

228	

A Game About Paths: ���
Which Player Has A Winning Strategy?	

Given: digraph G with 2n + 1 vertices, movable markers s, t
on two vertices	

Outline: 	

	

Player I : “I have a path (from s to t)”	

	

Player II: “I doubt it”	

Play alternates, starting with player I:	

	

Player I : places marker m on some node (“path goes thru m”)	

	

Player II: (s,t) ← (s,m) or (m,t) (“I doubt this half”)	

Ends after n rounds; Player I wins if s = t, or s → t is an edge	

229	

Winning The Path Game	

Player I has a winning strategy if there is an s-t path:	

	

Path has ≤ 2n edges; choosing middle vertex of that path for “m” in
each round halves the remaining path length, so after n rounds, path
length is ≤ 1, which is the “win” condition for Player 1.	

Player II has a winning strategy if there is no s-t path:	

	

If there is no s-t path, for every m, either there is no s-m path or no
m-t path (or both). In the former case, choose (s, m), else (m, t). At
termination, s ≠ t and s → t isn’t an edge.	

m	

s	

 t	

∃m∀halves, ���

is path	

m	

s	

 t	

∀m∃half, ���
no path	

m	

m	

 m	

 m	

m	

Game Tree	

2n levels	

Player I (∃) chooses among many possible “m” nodes	

Player II (∀) chooses left/right half	

231	

∃	

∀	

∃	

∀	

0/1	

1 1 1 1

/Strategy	

Complexity & The Path Game 	

M: a space S(n) NTM. WLOG, before accepting, M:	

-  erases tape	

-  goes to left end of tape	

So, there are unique init & accept configs, C0, Ca. 	

Digraph G: 	

-  Nodes: configs of M on fixed input x, 	

-  Edges: C → C’ iff M can move from config C to C’ in 1 step. 	

M accepts x iff there is a path from C0 to Ca in G	

232	

Savitch’s Theorem	

Theorem:	

	

NSPACE(S(n)) ⊆ DSPACE(S2(n))	

Pf:	

Accept iff Player I wins path game	

Game tree has height log(#configs) = O(S(n)) 	

	

Each node needs O(S(n)) bits to describe 2-3 configs (s,m,t)	

	

Can evaluate win/lose at each leaf by examining 2 configs	

	

So, evaluate tree in O(S2(n)) space.	

233	

Corollary:	

	

DetPSPACE = NondetPSPACE (So we just say “PSPACE”)	

Analogous result for P-TIME is of course the famous P = NP
question.	

234	

?

TQBF ���
“True Quantified Boolean Formulas”	

TQBF = { ∃y1∀x1∃y2 … f | assignment x,y satisfies formula f }	

(each xi, yi may be one or many bits; doesn’t matter.)	

TQBF in PSPACE: think of it as a game between ∃, ∀; ∃ wins
if formula satisfied. Do DFS of game tree as in examples
above, evaluating nodes (∧,∨) as you backtrack.	

235	

TQBF is PSPACE-complete���
“TQBF is to PSPACE as SAT is to NP”	

TQBF = { ∃y1∀x1∃y2 … f | assignment x,y satisfies formula f }	

Theorem: TQBF is PSPACE-complete	

Pf Idea:	

	

TQBF in PSPACE: above	

	

M an arbitrary nk space TM, show L(M) ≤p TQBF: below	

yk: the nk-bit config “m” picked by ∃-player in round k���
xk: 1 bit; ∀-player chooses which half-path is challenged���
Formula f: x’s select the appropriate pair of y configs;
check that 1st moves to 2nd in one step (alá Cook’s Thm)	

236	

More Detail	

For “x selects a pair of y’s”, use the following trick:	

	

f1(s1,t1) = ∃y1∀x1 g(s1,t1,y1,x1) 	

becomes	

	

∃y1∀x1 ∃s2,t2 [(x1 → (s2 = s1 ∧ t2 = y1)) ∧ 	

	

 	

 	

 (¬x1 → (s2 = y1 ∧ t2 = t1)) ∧ f2(s2,t2)]	

Here, x1 is a single bit; others represent nk-bit configs, and “=”
means the ∧ of bitwise ↔ across all bits of a config	

The final piece of the formula becomes ∃z g(sk,tk,z), where ���
g(sk,tk,z), ~ as in Cook’s Thm, is true if config sk equals tk or
moves to tk in 1 step according to M’s nondet choice z.	

A key point: formula is poly computable (e.g., poly length)	

“Geography”	

238	

“Generalized Geography”	

239	

TQBF ≤p ���
Generalized ���
Geography 	

∀

∃/∀

∃

∃ 1

And so GGEO is
PSPACE-complete	

∀

∃/∀

∃

∃
∃

∀

(if k even)	

∃

∃

SPACE: Summary	

Defined on TMs (as usual) but largely model-independent	

Time T ⊆ Space T ⊆ Time 2cT	

	

Cor: NP ⊆ PSPACE	

Savitch: Nspace(S) ⊆ Dspace(S2)	

	

Cor: Pspace = NPspace (!)	

TQBF is PSPACE-complete (analog: SAT is NP-complete)	

PSPACE and games (and games have serious purposes: auctions,
allocation of shared resources, hacker vs firewall,…)	

242	

An Analogy	

NP is to PSPACE as Solitaire is to Chess	

I.e., NP probs involve finding a solution to a fixed, static puzzle
with no adversary other than the structure of the puzzle itself	

PSPACE problems, of course, just plain use poly space. But
they often involve, or can be viewed as, games where an
interactive adversary dynamically thwarts your progress
towards a solution	

The former, tho hard, seems much easier than the later–part of
the reason for the (unproven) supposition that NP ⊊ PSPACE	

243	

Lecture 30	

Review & Wrapup	

244	

Computability Theory	

See Midterm Review Slides	

246	

Real Computers are Finite	

Unbounded “memory” is critical to most undecidability pfs	

Real computers are finite: n bits of state (registers, cache,
RAM, HD, …) ⇒ ≤ 2n configs – it’s a DFA!	

“Does M accept w” is decidable: run M on w; if it runs more
that 2n steps, it’s looping. (Recall LBA pfs.)	

BUT:	

2n is astronomical: a modest laptop has n = 100’s of gigabits
of state; # atoms in the universe ~ 2262 	

248	

Are “real” computer ���
problems undecidable?	

Options:	

100 G is so much >> 262, let’s say it’s approximately unbounded ⇒
undecidable	

Explore/quantify the “computational difficulty” of solving the
(decidable) “bounded memory” problem	

1st is somewhat crude, but easy, and not crazy, given that we
really don’t have methods that are fundamentally better for
100Gb memories than for arbitrary algorithms	

2nd is more refined but harder; goal of next few weeks is to
develop theory supporting such aims 	

249	

Time & Space Complexity	

Defined on TM’s but largely model-independent 	

	

(1-tape, multi-tape, RAMs, …)	

Esp. if we focus on asymptotic complexity, up to polynomials	

	

E.g. P, PSPACE	

For space, model-independence even extends to

nondeterministic models	

For time, this is a major open problem	

	

E.g., does P = NP?	

250	

P	

Many important problems are in P: solvable in deterministic
polynomial time	

	

Details are more the fodder of algorithms courses, but we’ve seen a
few examples here, plus many other examples in other courses	

Few problems not in P are routinely solved; 	

	

For those that are, practice is usually restricted to small instances, or
we’re forced to settle for approximate, suboptimal, or heuristic
“solutions”	

A major goal of complexity theory is to delineate the
boundaries of what we can feasibly solve	

251	

NP	

The tip-of-the-iceberg in terms of problems conjectured not
to be in P, but a very important tip, because	

	

a) they’re very commonly encountered, probably because	

	

b) they arise naturally from basic “search” and
“optimization” questions.	

Definition: poly time NTM	

Equivalent views: poly time verifiable, “guess and check”, “is
there a…” – all useful	

252	

NP-completeness	

Defn & Properties of ≤p	

A is NP-hard: everything in NP reducible to A	

A is NP-complete: NP-hard and in NP	

	

“the hardest problems in NP”	

	

“All alike under the skin”	

Most known natural problems in NP are complete	

	

#1: 3CNF-SAT	

	

Many others: Clique, VertexCover, HamPath, Circuit-SAT,…	

253	

Beyond NP	

“Polynomial Hierarchy”: 	

	

Quantified Boolean formulas with fixed number of
alternations of ∃, ∀	

	

Collapses if NP = co-NP	

	

Important in helping recognize variants of NP problems	

PSPACE	

Exponential Time	

Double-Exponential Time	

…	

254	

Complexity class relationships	

P ⊆ NP ∩ co-NP ⊆ NP ∪ co-NP ⊆ PSPACE ⊆ ExpTime	

NP ≠ co-NP ?	

All containments above proper ?	

255	

A taste of things we didn’t get to	

Resource-bounded Hierarchy Theorems:	

	

If t(n) << T(n) (e.g., limn→∞ t(n)/T(n) =0), then ���
DSPACE(t(n)) ⊊ DSPACE(T(n))	

	

Similar for DTIME, (but fussier about “<<”)	

	

 	

E.g.: TIME(n) ⊊ TIME(n2) ⊊ TIME(n3) … 	

	

 	

P ⊊ TIME(2n) ⊊ TIME(3n) ⊊ … TIME(2n2) ⊊ TIME(22n)	

	

Method: diagonalization again	

NSPACE is closed under complementation 	

	

Is there an s-t path in G?	

	

Is there no s-t path in G?	

256	

Final Exam	

Monday, 2:30	

In this Classroom	

Two pages of notes allowed; otherwise closed book.	

Coverage: comprehensive 	

Sipser, Chapters 3, 4, 5; 7, 8.1-8.3	

Lectures	

Homework	

Some bias (~ 60/40) towards topics since midterm	

Thanks, and Good Luck!	

258	

