
Lecture 14	

1	

Real Computers are Finite	

Unbounded “memory” is critical to most undecidability pfs	

Real computers are finite: n bits of state (registers, cache,
RAM, HD, …) ⇒ ≤ 2n configs – it’s a DFA!	

“Does M accept w” is decidable: run M on w; if it runs more
that 2n steps, it’s looping. (Recall LBA pfs.)	

BUT:	

2n is astronomical: a modest laptop has n = 100’s of gigabits
of state; # atoms in the universe ~ 2262 	

2	

Are “real” computer ���
problems undecidable?	

Options:	

100 G is so much >> 262, let’s say it’s approximately unbounded ⇒
undecidable	

Explore/quantify the “computational difficulty” of solving the
(decidable) “bounded memory” problem	

1st is somewhat crude, but easy, and not crazy, given that we
really don’t have methods that are fundamentally better for
100Gb memories than for arbitrary algorithms	

2nd is more refined but harder; goal of next few weeks is to
develop theory supporting such aims 	

3	

Measuring “Compute Time” 	

TM: simple, just count steps	

Defn: If M is a TM deciding L, the time complexity of M is the
function T(n) such that T(n) is the max number of steps
taken by M on any input w ∈ Σ* of length n. 	

Why as a function of n? Mainly to smooth and summarize 	

Loosely, the time complexity of L is the least such T over all M
deciding L.	

(I say “loosely” because it may be that no one M is fastest on all inputs,
but nevertheless we may be able to bound it.)	

4	

Example: L = { anbn | n ≥ 0 }���
(on a One-Tape TM)	

A simple algorithm (zig-zag, cross off letters): T(n) = ~n2	

Somewhat trickier: cross of 5 letters at a time: T(n) = ~n2/5	

A more complex algorithm: 	

 On a “two-track” tape, drag along a binary counter: T(n) = ~n log2n	

Slightly more work:	

 As above, but a decimal counter: T(n) = ~n log10n	

More work still:	

 As above, but use lots of states to count off 1st ten million a’s & b’s:	

 T(n) = ~ if (n <107) then n else n log10n	

One conclusion: 	

Focus on growth rate, not const or small n. I.e., big-O	

5	

Complexity Classes	

Defn:	

TIME(T(n)) = the set of languages decidable by single-tape
TMs in time O(T(n))	

E.g. { anbn | n ≥ 0 } ∈ TIME(n log n)	

6	

Example: L = { anbn | n ≥ 0 }���
(on a Two-Tape TM)	

Counter on tape 2; +1 for every a; -1 for every b	

Time: O(n) – faster than best 1-tape TM for L	

(Analysis is a bit subtle. “+1/-1” take log n steps in worst
case, but “carries/borrows” usually don’t propagate very far.
Can prove amortized cost of +1/-1 is only O(1) per
operation.)	

One Conclusion: “Time” is somewhat technology-sensitive	

(In fact, gap between 1 tape and 2 is quadratic: {ww|w ∈ Σ*})	

7	

“Tapes are Lame”	

Obviously, “real” computers have essentially constant-time
access to any bit of memory, not sequential access as on a
tape	

Fast “random access” will allow faster algorithms for many
problems, so time on a TM may seem a poor surrogate for
time on real computers	

How poor?	

8	

A Model of a “Real Computer”	

“Random Access Machines” (RAMs)	

Memory is an array	

Unit time access to any word	

Basic, unit time ops like +, -, *, /, test-if-zero,…	

Programs	

For comparison to TMs, perhaps have read-only “input tape”
or other string-oriented input convention and special
“accept/reject” operations. Program typically not in memory
(but could be)	

9	

TM-time(T) ⊆ RAM-time(T) ���
RAM-time(T) ⊆ TM-time(T3)	

Proof: look at your homework #1 and see how long your
simulations took.	

TM by RAM is quick	

RAM by TM is slower, but cubic is conservative. In time T,
the RAM can touch at most T memory words, each word
holds at most T bits, it takes time at most T2 to slog through
tape to fetch/store a word, etc. 	

10	

A Church-Turing thesis for “time”?	

Church-Turing thesis: all “reasonable” models of
computation are equivalent – i.e. all give the same set of
decidable problems	

“Extended” Church Turing thesis: All “reasonable” models of
computation are equivalent up to a polynomial difference in
time complexity	

E.g. from above, this is true of deterministic singe- and multi-
tape TMs and RAMs	

More on what “reasonable” means later…	

11	

12	

The class P	

Definition: 	

P = ∪k≥1 TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in polynomial time. I.e., L ∈ P iff there is
an algorithm deciding L in time T(n) = O(nk) for
some fixed k (i.e., k is independent of the input).	

Examples: sorting, shortest path, MST, connectivity,
… 	

Why “Polynomial”?	

Point is not that n2000 is a nice time bound, or that the
differences among n and 2n and n2 are negligible.	

Rather, simple theoretical tools may not easily capture such
differences, whereas exponentials are qualitatively different
from polynomials and may be amenable to theoretical
analysis.	

“My problem is in P” is a starting point for a more detailed analysis	

“My problem is not in P” may suggest that you need to shift to a more
tractable variant 	

13	

14	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	

15	

Complexity Increase E.g. T=1012

O(n) n0  2n0 1012 2 x 1012

O(n2) n0  √2 n0 106 1.4 x 106

O(n3) n0  3√2 n0 104 1.25 x 104

2n /10 n0  n0+10 400 410
2n n0  n0 +1 40 41

Another view of Poly vs Exp	

Next year's computer will be 2x faster. If I can
solve problem of size n0 today, how large a problem
can I solve in the same time next year? 	

