
Lecture 14	
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Real Computers are Finite	



Unbounded “memory” is critical to most undecidability pfs	



Real computers are finite: n bits of state (registers, cache, 
RAM, HD, …) ⇒ ≤ 2n configs – it’s a DFA!	



“Does M accept w” is decidable: run M on w; if it runs more 
that 2n steps, it’s looping. (Recall LBA pfs.)	



BUT:	


2n is astronomical: a modest laptop has n = 100’s of gigabits 
of state; # atoms in the universe ~ 2262 	
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Are “real” computer ���
problems undecidable?	



Options:	


100 G is so much >> 262, let’s say it’s approximately unbounded ⇒ 
undecidable	


Explore/quantify the “computational difficulty” of solving the 
(decidable) “bounded memory” problem	



1st is somewhat crude, but easy, and not crazy, given that we 
really don’t have methods that are fundamentally better for 
100Gb memories than for arbitrary algorithms	



2nd is more refined but harder; goal of next few weeks is to 
develop theory supporting such aims 	



3	





Measuring “Compute Time” 	



TM: simple, just count steps	



Defn: If M is a TM deciding L, the time complexity of M is the 
function T(n) such that T(n) is the max number of steps 
taken by M on any input w ∈ Σ* of length n.  	



Why as a function of n?  Mainly to smooth and summarize 	



Loosely, the time complexity of L is the least such T over all M 
deciding L.	



(I say “loosely” because it may be that no one M is fastest on all inputs, 
but nevertheless we may be able to bound it.)	



4	





Example: L = { anbn | n ≥ 0 }���
(on a One-Tape TM)	



A simple algorithm (zig-zag, cross off letters): T(n) = ~n2	



Somewhat trickier: cross of  5 letters at a time: T(n) = ~n2/5	


A more complex algorithm: 	



   On a “two-track” tape, drag along a binary counter: T(n) = ~n log2n	



Slightly more work:	


   As above, but a decimal counter: T(n) = ~n log10n	



More work still:	


   As above, but use lots of states to count off 1st ten million a’s & b’s:	


   T(n) = ~ if (n <107) then n else n log10n	



One conclusion: 	


Focus on growth rate, not const or small n.  I.e., big-O	
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Complexity Classes	



Defn:	



TIME(T(n)) = the set of languages decidable by single-tape 
TMs in time O(T(n))	



E.g. { anbn | n ≥ 0 } ∈ TIME(n log n)	
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Example: L = { anbn | n ≥ 0 }���
(on a Two-Tape TM)	



Counter on tape 2; +1 for every a; -1 for every b	



Time: O(n) – faster than best 1-tape TM for L	



(Analysis is a bit subtle.  “+1/-1” take log n steps in worst 
case, but “carries/borrows” usually don’t propagate very far.  
Can prove amortized cost of +1/-1 is only O(1) per 
operation.)	



One Conclusion: “Time” is somewhat technology-sensitive	



(In fact, gap between 1 tape and 2 is quadratic: {ww|w ∈ Σ*})	
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“Tapes are Lame”	



Obviously, “real” computers have essentially constant-time 
access to any bit of memory, not sequential access as on a 
tape	


Fast “random access” will allow faster algorithms for many 
problems, so time on a TM may seem a poor surrogate for 
time on real computers	



How poor?	
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A Model of a “Real Computer”	



“Random Access Machines” (RAMs)	



Memory is an array	


Unit time access to any word	



Basic, unit time ops like +, -, *, /, test-if-zero,…	


Programs	



For comparison to TMs, perhaps have read-only “input tape” 
or other string-oriented input convention and special 
“accept/reject” operations. Program typically not in memory 
(but could be)	
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TM-time(T) ⊆ RAM-time(T) ���
RAM-time(T) ⊆ TM-time(T3)	



Proof: look at your homework #1 and see how long your 
simulations took.	



TM by RAM is quick	



RAM by TM is slower, but cubic is conservative.  In time T, 
the RAM can touch at most T memory words, each word 
holds at most T bits, it takes time at most T2 to slog through 
tape to fetch/store a word, etc. 	
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A Church-Turing thesis for “time”?	



Church-Turing thesis: all “reasonable” models of 
computation are equivalent – i.e. all give the same set of 
decidable problems	



“Extended” Church Turing thesis: All “reasonable” models of 
computation are equivalent up to a polynomial difference in 
time complexity	



E.g. from above, this is true of deterministic singe- and multi-
tape TMs and RAMs	



More on what “reasonable” means later…	
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The class P	



Definition: 	


P = ∪k≥1 TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in polynomial time.  I.e., L ∈ P iff there is 
an algorithm deciding L in time T(n) = O(nk) for 
some fixed k (i.e., k is independent of the input).	



Examples: sorting, shortest path, MST, connectivity,
… 	





Why “Polynomial”?	



Point is not that n2000 is a nice time bound, or that the 
differences among n and 2n and n2 are negligible.	



Rather, simple theoretical tools may not easily capture such 
differences, whereas exponentials are qualitatively different 
from polynomials and may be amenable to theoretical 
analysis.	



“My problem is in P” is a starting point for a more detailed analysis	



“My problem is not in P” may suggest that you need to shift to a more 
tractable variant 	
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22n!
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1000n2!

Polynomial vs ���
Exponential Growth	
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Complexity Increase E.g. T=1012 

O(n) n0  2n0 1012 2  x 1012 

O(n2) n0  √2 n0 106         1.4  x 106 

O(n3) n0  3√2 n0 104 1.25  x 104 

2n /10 n0  n0+10 400 410 
2n n0  n0 +1 40 41 

Another view of Poly vs Exp	



Next year's computer will be 2x faster.  If I can 
solve problem of size n0 today, how large a problem 
can I solve in the same time next year? 	




