
Lecture 16	

23	

Complexity Classes	

Defn:	

TIME(T(n)) = the set of languages decidable by single-tape
TMs in time O(T(n))	

E.g. { anbn | n ≥ 0 } ∈ TIME(n log n)	

24	

A Church-Turing thesis for “time”?	

Church-Turing thesis: all “reasonable” models of
computation are equivalent – i.e. all give the same set of
decidable problems	

“Extended” Church Turing thesis: All “reasonable” models of
computation are equivalent up to a polynomial difference in
time complexity	

E.g. from above, this is true of deterministic singe- and multi-
tape TMs and RAMs	

More on what “reasonable” means later…	

25	

26	

The class P	

Definition: 	

P = ∪k≥1 TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in polynomial time. I.e., L ∈ P iff there is
an algorithm deciding L in time T(n) = O(nk) for
some fixed k (i.e., k is independent of the input).	

Examples: sorting, shortest path, MST, connectivity,
… 	

27	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

Polynomial vs ���
Exponential Growth	

Nondeterministic Time	

Given a nondeterministic TM M that
always halts, its run time T(n) is the
length of the longest computation path
(accepting or rejecting) on any input of
length n.	

(In fact, the theory doesn’t change much if you
make it “shortest accepting path”, but that’s just
a detail.) 	

28	

T(n)!

29	

The class NP	

Definition: 	

NP = ∪k≥1Nondeterministic-TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in Nondeterministic polynomial time. I.e.,
L ∈ NP iff there is a nondeterministic algorithm
deciding L in time T(n) = O(nk) for some fixed k
(i.e., k is independent of the input).	

Examples: sorting, shortest path, …, and more! 	

30	

T(n)!

2cT(n)!
accept

NTIME(T) ⊆ DTIME(2O(T))	

Theorem: Every problem
solvable in nondeterministic
time T(n) can be solved
deterministically in time
exponential in T(n)	

Proof:	

As before, do breadth first
simulation. (Depth-first
works too.)	

31	

The Clique Problem	

Given: a graph G=(V,E) and an integer k	

Question: is there a subset U of V with���
|U| ≥ k such that every pair of vertices in U is joined by an
edge.	

32	

"Problem" – the general case	

Ex: The Clique Problem: Given a graph G and an integer k,
does G contain a k-clique?	

"Problem Instance" – the specific cases	

Ex: Does contain a 4-clique? (no)	

Ex: Does contain a 3-clique? (yes)	

Decision Problems – Just Yes/No answer	

Problems as Sets of "Yes" Instances	

Ex: CLIQUE = { (G,k) | G contains a k-clique }	

E.g., (, 4) ∉ CLIQUE	

E.g., (, 3) ∈ CLIQUE	

Some Convenient Technicalities	

33	

Satisfiability	

Boolean variables x1, ..., xn	

taking values in {0,1}. 0=false, 1=true	

Literals	

xi or ¬xi for i = 1, ..., n	

Clause	

a logical OR of one or more literals	

e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	

CNF formula (“conjunctive normal form”)	

a logical AND of a bunch of clauses	

34	

Satisfiability	

CNF formula example	

(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)	

If there is some assignment of 0’s and 1’s to the
variables that makes it true then we say the formula
is satisfiable	

the one above is, the following isn’t	

x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3���

Satisfiability: Given a CNF formula F, is it satisfiable?	

35	

Satisfiable?	

(
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	

(
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 ¬z	
)	

(
 x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 ¬z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 ¬x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	

(
 ¬x	
 ∨	
 ¬y	
 ∨	
 ¬z	
)	
 ∧	
 (
 ¬x	
 ∨	
 y	
 ∨	
 z	
)	
 ∧	

(
 x	
 ∨	
 ¬y	
 ∨	
 z	
)	
 ∧	
 (
 x	
 ∨	
 y	
 ∨	
 ¬z	
)	

36	

Common property of these problems: ���
Discrete Exponential Search���

 Loosely–find a needle in a haystack	

“Answer” is literally just yes/no, but there’s always a
somewhat more elaborate “solution” (aka “hint” or
“certificate”) that transparently‡ justifies each “yes”
instance (and only those) – but it’s buried in an
exponentially large search space of potential solutions. 	

‡Transparently = verifiable in polynomial time	

