
Lecture 16	
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Complexity Classes	



Defn:	



TIME(T(n)) = the set of languages decidable by single-tape 
TMs in time O(T(n))	



E.g. { anbn | n ≥ 0 } ∈ TIME(n log n)	
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A Church-Turing thesis for “time”?	



Church-Turing thesis: all “reasonable” models of 
computation are equivalent – i.e. all give the same set of 
decidable problems	



“Extended” Church Turing thesis: All “reasonable” models of 
computation are equivalent up to a polynomial difference in 
time complexity	



E.g. from above, this is true of deterministic singe- and multi-
tape TMs and RAMs	



More on what “reasonable” means later…	
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The class P	



Definition: 	


P = ∪k≥1 TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in polynomial time.  I.e., L ∈ P iff there is 
an algorithm deciding L in time T(n) = O(nk) for 
some fixed k (i.e., k is independent of the input).	



Examples: sorting, shortest path, MST, connectivity,
… 	
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Nondeterministic Time	



Given a nondeterministic TM M that 
always halts, its run time T(n) is the 
length of the longest computation path 
(accepting or rejecting) on any input of 
length n.	



(In fact, the theory doesn’t change much if you 
make it “shortest accepting path”, but that’s just 
a detail.) 	
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The class NP	



Definition: 	


NP = ∪k≥1Nondeterministic-TIME(nk)	



I.e., the set of (decision) problems solvable by 
computers in Nondeterministic polynomial time.  I.e., 
L ∈ NP iff there is a nondeterministic algorithm 
deciding L in time T(n) = O(nk) for some fixed k 
(i.e., k is independent of the input).	



Examples: sorting, shortest path, …, and more! 	
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T(n)!

2cT(n)!
accept 

NTIME(T) ⊆ DTIME(2O(T))	



Theorem: Every problem 
solvable in nondeterministic 
time T(n) can be solved 
deterministically in time  
exponential in T(n)	



Proof:	


As before, do breadth first 
simulation. (Depth-first 
works too.)	
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The Clique Problem	



Given: a graph G=(V,E) and an integer k	



Question: is there a subset U of V with���
|U| ≥ k such that every pair of vertices in U is joined by an 
edge.	
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"Problem" – the general case	


Ex: The Clique Problem: Given a graph G and an integer k, 
does G contain a k-clique?	



"Problem Instance" – the specific cases	


Ex: Does                     contain a 4-clique? (no)	


Ex: Does                     contain a 3-clique? (yes)	



Decision Problems – Just Yes/No answer	


Problems as Sets of "Yes" Instances	



Ex: CLIQUE = { (G,k) | G contains a k-clique }	


E.g., (                 , 4) ∉  CLIQUE	


E.g., (                 , 3) ∈  CLIQUE	



Some Convenient Technicalities	
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Satisfiability	



Boolean variables x1, ..., xn	


taking values in {0,1}.  0=false, 1=true	



Literals	


xi or ¬xi for i = 1, ..., n	



Clause	


a logical OR of one or more literals	


e.g. (x1 ∨ ¬x3 ∨ x7 ∨ x12)	



CNF formula (“conjunctive normal form”)	


a logical AND of a bunch of clauses	
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Satisfiability	



CNF formula example	


(x1 ∨ ¬x3 ∨ x7) ∧ (¬x1 ∨ ¬x4 ∨ x5 ∨ ¬x7)	



If there is some assignment of 0’s and 1’s to the 
variables that makes it true then we say the formula 
is satisfiable	



the one above is, the following isn’t	


x1 ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ ¬x3���

Satisfiability:  Given a CNF formula F, is it satisfiable?	
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Satisfiable?	
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Common property of these problems: ���
Discrete Exponential Search���

 Loosely–find a needle in a haystack	



“Answer” is literally just yes/no, but there’s always a 
somewhat more elaborate “solution” (aka “hint” or 
“certificate”) that transparently‡ justifies each “yes” 
instance (and only those) – but it’s buried in an 
exponentially large search space of potential solutions. 	



‡Transparently = verifiable in polynomial time	




