Lecture 16

Complexity Classes

Defn:
$\operatorname{TIME}(\mathrm{T}(\mathrm{n}))$ = the set of languages decidable by single-tape TMs in time $O(T(n))$
E.g. $\left\{a^{n} b^{n} \mid n \geq 0\right\} \in \operatorname{TIME}(n \log n)$

A Church-Turing thesis for "time"?

Church-Turing thesis: all "reasonable" models of computation are equivalent - i.e. all give the same set of decidable problems
"Extended" Church Turing thesis: All "reasonable" models of computation are equivalent up to a polynomial difference in time complexity
E.g. from above, this is true of deterministic singe- and multitape TMs and RAMs

More on what "reasonable" means later...

The class P

Definition:

$$
P=U_{k \geq 1} \operatorname{TIME}\left(n^{k}\right)
$$

l.e., the set of (decision) problems solvable by computers in polynomial time. l.e., $L \in P$ iff there is an algorithm deciding L in time $T(n)=O\left(n^{k}\right)$ for some fixed k (i.e., k is independent of the input).

Examples: sorting, shortest path, MST, connectivity,

Polynomial vs

Exponential Growth

Nondeterministic Time

Given a nondeterministic TM M that always halts, its run time $T(n)$ is the length of the longest computation path (accepting or rejecting) on any input of length n .
(In fact, the theory doesn't change much if you make it "shortest accepting path", but that's just a detail.)

The class NP

Definition:
NP = $\bigcup_{k \geq 1}$ Nondeterministic-TIME(n^{k})
l.e., the set of (decision) problems solvable by computers in Nondeterministic polynomial time. I.e., $L \in N P$ iff there is a nondeterministic algorithm deciding L in time $T(n)=O\left(n^{k}\right)$ for some fixed k (i.e., k is independent of the input).

Examples: sorting, shortest path, ..., and more!

$\operatorname{NTIME}(\mathrm{T}) \subseteq \operatorname{DTIME}\left(2^{\mathrm{O}(\mathrm{T})}\right)$

Theorem: Every problem solvable in nondeterministic time $T(n)$ can be solved deterministically in time exponential in $\mathrm{T}(\mathrm{n})$

Proof:

As before, do breadth first simulation. (Depth-first works too.)

The Clique Problem

Given: a graph $G=(V, E)$ and an integer k
Question: is there a subset U of V with $|U| \geq k$ such that every pair of vertices in U is joined by an edge.

Some Convenient Technicalities

"Problem" - the general case
Ex: The Clique Problem: Given a graph G and an integer k, does G contain a k-clique?
"Problem Instance" - the specific cases
Ex: Does contain a 4-clique? (no)
Ex: Does contain a 3-clique? (yes)
Decision Problems - Just Yes/No answer
Problems as Sets of "Yes" Instances
Ex: CLIQUE $=\{(\mathrm{G}, \mathrm{k}) \mid \mathrm{G}$ contains a k-clique $\}$
$\left.\begin{array}{l}\text { E.g., }(\sim, ~ \\ \text { E.g., } \\ \sim\end{array}\right) \in$ CLIQUE

Satisfiability

Boolean variables x_{1}, \ldots, x_{n} taking values in $\{0, \mathrm{l}\}$. $0=$ false, $\mathrm{I}=$ true
Literals

$$
x_{i} \text { or } \neg x_{i} \text { for } i=1, \ldots, n
$$

Clause
a logical OR of one or more literals
e.g. ($\mathrm{x}_{1} \vee \neg \mathrm{x}_{3} \vee \mathrm{x}_{7} \vee \mathrm{x}_{12}$)

CNF formula ("conjunctive normal form")
a logical AND of a bunch of clauses

Satisfiability

CNF formula example

$$
\left(x_{1} \vee \neg x_{3} \vee x_{7}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee x_{5} \vee \neg x_{7}\right)
$$

If there is some assignment of 0 's and I's to the variables that makes it true then we say the formula is satisfiable
the one above is, the following isn't

$$
x_{1} \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{3}
$$

Satisfiability: Given a CNF formula F, is it satisfiable?

Satisfiable?

$$
\begin{aligned}
& (x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge \\
& (x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge \\
& (\neg x \vee \neg y \vee \neg z) \wedge(x \vee y \vee \vee) \wedge \\
& (x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
\end{aligned}
$$

$$
\begin{aligned}
& (x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z) \wedge \\
& (x \vee \neg y \vee \neg z) \wedge(\neg x \vee \neg y \vee z) \wedge \\
& (\neg x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee z) \wedge \\
& (x \vee \neg y \vee z) \wedge(x \vee y \vee \neg z)
\end{aligned}
$$

Common property of these problems: Discrete Exponential Search Loosely-find a needle in a haystack

"Answer" is literally just yes/no, but there's always a somewhat more elaborate "solution" (aka "hint" or "certificate") that transparently\ddagger justifies each "yes" instance (and only those) - but it's buried in an exponentially large search space of potential solutions.
\#Transparently = verifiable in polynomial time

