
Lecture 19	

42	

43	

The class NP	

Definition: 	

NP = ∪k≥1Nondeterministic-TIME(nk)	

I.e., the set of (decision) problems solvable by
computers in Nondeterministic polynomial time. I.e.,
L ∈ NP iff there is a nondeterministic algorithm
deciding L in time T(n) = O(nk) for some fixed k
(i.e., k is independent of the input).	

Alternate Views of Nondeterminism	

NTM – there is a path…	

Parallel – make the tree	

Search – look for a path (or sat-ing assignment or clique or…) 	

Guess and Check	

Polynomial Verifier	

44	

46	

Alternate Way To Define NP	

A language L is polynomially verifiable iff there is a polynomial
time procedure v(-,-), (the “verifier”) and an integer k such
that 	

for every x ∈ L there is a “hint” h with |h| ≤ |x|k such that v(x,h) = YES ���
and	

for every x ∉ L there is no hint h with |h| ≤ |x|k such that v(x,h) = YES	

(“Hints,” sometimes called “certificates,” or “witnesses”, are just strings.)	

Equivalently:	

There is some integer k and language Lv in P s.t.: 	

 L = { x | ∃y, |y| ≤ |x|k ⋀〈x,y〉 ∈ Lv }	

Example: Clique	

“Is there a k-clique in this graph?”	

any subset of k vertices might be a clique	

there are many such subsets, but I only need to find one	

if I knew where it was, I could describe it succinctly, e.g.
"look at vertices 2,3,17,42,...", 	

I'd know one if I saw one: "yes, there are edges between ���
2 & 3, 2 & 17,... so it's a k-clique”	

this can be quickly checked	

And if there is not a k-clique, I wouldn’t be fooled by a
statement like “look at vertices 2,3,17,42,...” 	

47	

48	

More Formally: CLIQUE is in NP	

procedure v(x,h)	

if 	

 x is a well-formed representation of a graph ���
 G = (V, E) and an integer k, 	

and 	

 h is a well-formed representation of a k-vertex ���
 subset U of V, 	

and 	

	
U is a clique in G, 	

then output "YES"	

else output "I'm unconvinced" 	

49	

Is it correct?	

For every x = (G,k) such that G contains a k-clique,
there is a hint h that will cause v(x,h) to say YES,
namely h = a list of the vertices in such a k-clique	

and	

No hint can fool v into saying yes if either x isn't
well-formed (the uninteresting case) or if x = (G,k)
but G does not have any cliques of size k (the
interesting case)	

The 2 defns are equivalent	

Theorem: L in NP iff L is polynomially verifiable	

Pf: ⇒ Let M be a poly time NTM for L, x an input to M, |x| =
n. If x in L there is an accepting computation history y for
M on x. If M runs T = nO(1) steps on x, then y is T+1
configs, each of length ~T, so |y| = O(T2) = nO(1).
Furthermore, a deterministic TM can check that y is an
accepting history of M on x in poly time. Critically, if x is
not accepted, no y will pass this check. Thus, L is poly
time verifiable. ���
(We could equally well let y encode the sequence of nondeterministic
choices M makes along some accepting path.)	

50	

The 2 defns are equivalent (cont.)	

Theorem: L in NP iff L is polynomially verifiable	

Pf: ⇐ Suppose L is poly time verifiable, V is a time nd -time
TM implementing the verifier, and k is the exponent in the
hint length bound. Consider this TM:	

M: on input x, nondeterministically choose a string y of
length at most |x|k, then run V on ⟨x,y⟩; accept iff it does.	

Then M is an NTM accepting L: By defn of poly verifier���
x ∈ L iff ∃y, |y| ≤ |x|k ⋀ V accepts 〈x,y〉, and M tries
(nondeterministically) all such y’s, accepting iff it finds one
that V accepts.	

Time bound for M: ??	

51	

(|x|+|x|k+3)d = O(nkd) = nO(1)	

Example: SAT	

“Is there a satisfying assignment for this Boolean
formula?”	

any assignment might work 	

there are lots of them 	

I only need one 	

if I had one I could describe it succinctly, e.g., “x1=T, x2=F, ..., xn=T" 	

I'd know one if I saw one: "yes, plugging that in, I see formula = T...”
this can be quickly checked	

And if the formula is unsatisfiable, I wouldn’t be fooled by , “x1=T,
x2=F, ..., xn=F" 	

52	

53	

More Formally: SAT ∈ NP	

Hint: the satisfying assignment A	

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)	

Syntax: True iff F is a well-formed formula & A is a truth-
assignment to its variables	

Satisfies: plug A into F and evaluate	

Correctness:	

If F is satisfiable, it has some satisfying assignment A, and
we’ll recognize it	

If F is unsatisfiable, it doesn’t, and we won’t be fooled	

Alternate Views of Nondeterminism	

NTM – there is a path…	

Parallel – make the tree	

Search – look for a path (or sat-ing assignment or clique or…) 	

Guess and Check	

Polynomial Verifier	

54	

55	

The complexity class NP	

NP consists of all decision problems where 	

You can verify the YES answers efficiently (in polynomial
time) given a short (polynomial-size) hint	

And	

No hint can fool your polynomial time verifier into saying
YES for a NO instance	

(implausible for all exponential time problems)	

one among exponentially many;
know it when you see it!

56	

Keys to showing that ���
a problem is in NP	

What's the output? (must be YES/NO)	

What's the input? Which are YES?	

For every given YES input, is there a hint that would help? Is
it polynomial length?	

OK if some inputs need no hint	

For any given NO input, is there a hint that would trick you?	

Example	

ATM is in NP	

Input: a pair <M,w>	

Output: yes/no does M accept w	

Hint: y, an accepting computation history of M on w	

Clearly, such a y exists for all accepted x and only accepted

x, so we accept the right x’s and reject the rest.	

And it’s fast – checking successive configs in the history is at
worst, quadratic in the length of the history, so the
verifier for <x,y> runs in time |<x,y>|O(1).	

57	

FALSE	

3’ UTR	

58	

