Lecture 20

P and NP

Definition:

$$
P=U_{k \geq 1} \operatorname{TIME}\left(n^{k}\right)
$$

l.e., the set of (decision) problems solvable by computers in polynomial time.

$$
N P=\bigcup_{k \geq 1} \text { Nondeterministic-TIME }\left(\mathrm{n}^{k}\right)
$$

l.e., the set of (decision) problems solvable by computers in Nondeterministic polynomial time.

Alternate Definition of NP

A language L is polynomially verifiable iff there is a polynomial time procedure $v(-,-)$, (the "verifier") and an integer k such that
for every $\mathrm{x} \in \mathrm{L}$ there is a "hint" h with $|\mathrm{h}| \leq|\mathrm{x}|^{\mathrm{k}}$ such that $\mathrm{v}(\mathrm{x}, \mathrm{h})=\mathrm{YES}$ and
for every $\mathrm{x} \notin \mathrm{L}$ there is no hint h with $|\mathrm{h}| \leq|\mathrm{x}|^{k}$ such that $\mathrm{v}(\mathrm{x}, \mathrm{h})=\mathrm{YES}$ ("Hints," sometimes called "certificates," or "witnesses", are just strings.)

Equivalently:
There is some integer k and language L_{v} in P s.t.:

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k} \wedge\langle x, y\rangle \in L_{v}\right\}\right.
$$

FALSE Example

$A_{T M}$ is in NP
Input: a pair <M,w>
Output: yes/no does M accept w
Hint: y, an accepting computation history of M on w
Clearly, such a y exists for all accepted x and only accepted x, so we accept the right x 's and reject the rest.
And it's fast - checking successive configs in the history is at worst quadratic in the length of the history, so the verifier for $\langle x, y\rangle$ runs in time $|\langle x, y\rangle|^{O(1)}$.

FALSE Example

$A_{T M}$ is in NP
Input: a pair <M,w>
Output: yes/no does M accept w
Hint: y $=0$ or I, depending on whether M accepts w
Clearly, such a y exists, so we accept the right x's and reject the rest.

And it's really fast - just read the bit and accept/reject.

P vs NP vs Exponential Time

Theorem: Every problem in NP can be solved deterministically in exponential time

Proof: "hints" are only n^{k} long; try all $2^{n^{k}}$ possibilities, say by backtracking. If any succeed, say YES; if all fail, say NO.

P and NP

Every problem in P is in NP one doesn't even need a hint for problems in P so just ignore any hint you are given

Every problem in NP is in exponential time
l.e., $P \subseteq N P \subseteq \operatorname{Exp}$

We know $P \neq$ Exp, so either $P \neq N P$, or $N P \neq \operatorname{Exp}$ (most

likely both)

Problems

Short Path:

4-tuples $\langle\mathrm{G}, \mathrm{s}, \mathrm{t}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a digraph with vertices s, t, and an integer k, for which there is a path from s to t of length $\leq k$

Long Path:

4-tuples $\langle\mathrm{G}, \mathrm{s}, \mathrm{t}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a digraph with vertices s, t, and an integer k, for which there is an acyclic path from s to t of length $\geq k$

Short Path

"Is there a short path $(<k)$ from A to B in this graph?"
Any path might work
There are lots of them
I only need one
If I knew one I could describe it succinctly, e.g., "go from A to node 2, then node 42, then ...'

I'd know one if I saw one: "yes, I see there's an edge from A to 2 and from 2 to 42 ... and the total length is $<k$ "

And if there isn't a short path, I wouldn't be fooled by, e.g., "go from A to node 2, then node 42, then ... "

Long Path

"Is there a long path (>k) from A to B in this graph?"
Any path might work
There are lots of them
I only need one
If I knew one I could describe it succinctly, e.g., "go from A to node 2 , then node 42 , then ... '

I'd know one if I saw one: "yes, I see there's an edge from A to 2 and from 2 to $42 \ldots$ and the total length is $>\mathrm{k}$ "

And if there isn't a long path, I wouldn't be fooled by, e.g., "go from A to node 2, then node 42, then ... "

Mostly Long Paths

"Are the majority of paths from A to B long (>k)?" Any patlmight work Yes! \rightarrow Thr, e are lots of ther

No, this is a collective property of the set of all paths in the graph, and no one path
overrules the rest
And fit there isn't a long paty, I wouldn't be fooled ...

More Problems

Independent-Set:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph and k is an integer, for which there is a subset U of V with $|\mathrm{U}| \geq k$ such that no two vertices in U are
 joined by an edge.
Clique:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph and k is an integer k, for which there is a subset U of V with $|\mathrm{U}| \geq k$ such that every pair of vertices in U
 is joined by an edge.

More Problems

Euler Tour:

Graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ for which there is a cycle traversing each edge once.

Hamilton Tour:

Graphs $G=(V, E)$ for which there is a simple cycle of length |V|, i.e., traversing each vertex once.
TSP:
Pairs $\langle\mathrm{G}, \mathrm{k}\rangle$, where $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$ is a a weighted graph and k is an integer, such that there is a Hamilton tour of G with total weight $\leq k$.

Generic Pattern in These Examples

Set of all x for which there is $a \mathrm{y}$ with some property P , and
I) y isn't too big $\left(|y| \leq|x|^{(1)}\right)$, and
2) the property is easy (poly time) to check (given $x \& y$)
"There is a" is a reflection of the quantifier characterization of NP:
L is in NP iff there is some integer k and language L_{v} in P s.t.:

$$
L=\left\{x\left|\exists y,|y| \leq|x|^{k} \wedge\langle x, y\rangle \in L_{v}\right\}\right.
$$

Some similar patterns that suggest problems not in NP

Rather than "there is a..." maybe it's "no..." or "for all..." E.g.

UNSAT: "no assignment satisfies formula," or "for all assignments, formula is false"
Or
NOCLIQUE: "every subset of k vertices is not a k-clique"
These examples are in co-NP: complements of problems in
NP. (Quantifier characterization:
$\ldots L=\left\{x\left|\forall y,|y| \leq|x|^{k} \wedge\langle x, y\rangle \in L_{v}\right\} \ldots\right)$
NP =?= co-NP ? Unknown, but seems likely \neq.

Some similar patterns that suggest problems not in NP

Rather than "there is a..." maybe it's "... is the largest..." E.g.

MAXCLIQUE: k is the size of the largest clique in G
Or
MINTSP: k is the cost of the cheapest Ham cycle in G
Again, they seem NP-like, but are probably "harder." E.g., not only do you need to prove existence of k-clique (a problem in NP) you also need to prove absence of a $(k+1)$-clique (a co-NP question)

Some similar patterns that suggest problems not in NP

Rather than "there is a..." maybe it's ... something even more complicated, like
the "mostly long paths" example above, or
"there is an exponentially long string y with property P ", or
some quantifier structure other than just \exists, such as

$$
" \exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \exists x_{5} \forall x_{6} \ldots \text { formula }\left(x_{1} \ldots x_{n}\right)=\text { True" }
$$

or many other things

Bottom line:
NP is a common, but not universal, problem pattern

