
Lecture 21	

78	

Review from previous lecture	

P ⊆ NP ⊆ Exp; at least one containment is proper	

Examples in NP:	

	
SAT, short/long paths, Euler/Ham tours, clique, indp set…	

Common feature:	

	
“… there is a …”	

(and some related problems do not appear to share this
feature: UnSAT, maxClique, MostlyLongPaths, …)	

79	

Euler Tour	

2-SAT	

2-Coloring	

Min Cut	

Shortest Path	

80	

Hamilton Tour	

3-SAT	

3-Coloring	

Max Cut	

Longest Path	

Similar pairs; seemingly
different computationally!

Superficially different;
sim

ilar com
putationally!

Some Problem Pairs	

85	

The most obvious algorithm for most of these
problems is brute force:	

try all possible hints; check each one to see if it works.	

Exponential time:	

2n truth assignments for n variables	

n! possible TSP tours of n vertices	

 possible k element subsets of n vertices	

etc.	

…and to date, every alg, even much less-obvious
ones, are slow, too 	

⎟
⎠

⎞
⎜
⎝

⎛
k
n

Solving NP problems without hints	

86	

P vs NP	

Theory	

P = NP ?	

Open Problem!	

I bet against it	

Practice	

Many interesting, useful,
natural, well-studied
problems known to be
NP-complete	

With rare exceptions, no
one routinely succeeds in
finding exact solutions to
large, arbitrary instances	

104	

Another NP problem: ���
Vertex Cover	

Input: Undirected graph G = (V, E), integer k.	

Output: True iff there is a subset C of V of ���
size ≤ k such that every edge in E is incident to at
least one vertex in C.	

Example: Vertex cover of size ≤ 2.	

In NP? Exercise	

106	

3SAT ≤p VertexCover 	

107	

3SAT ≤p VertexCover 	

108	

3SAT ≤p VertexCover 	

109	

k=6

3SAT ≤p VertexCover 	

110	

k=6

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)	

111	

f =	

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	

112	

k=6

3SAT ≤p VertexCover 	

113	

Correctness of “3SAT ≤p VertexCover”	

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-cover; does not try to find satisfying assignment or cover.	

Correctness:	

 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward. 	

 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add other
2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle
edges; only true literals (but perhaps not all true literals) uncovered, so at least
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial)
truth assignment since no (x, ¬x) pair uncovered. It satisfies c since there is one
uncovered node in each clause triangle (else some other clause triangle has > 1
uncovered node, hence an uncovered edge.)	

