Lecture 21

Review from previous lecture

$P \subseteq N P \subseteq \operatorname{Exp} ;$ at least one containment is proper Examples in NP: SAT, short/long paths, Euler/Ham tours, clique, indp set...
Common feature:
"... there is a ..."
(and some related problems do not appear to share this feature: UnSAT, maxClique, MostlyLongPaths, ...)

Some Problem Pairs

Euler Tour	Hamilton Tour
2-SAT	3-SAT
2-Coloring	3-Coloring
Min Cut	Max Cut
Shortest Path	Longest Path
\qquad	Similar pairs; seemingly different computationally

Solving NP problems without hints

The most obvious algorithm for most of these problems is brute force:
try all possible hints; check each one to see if it works.
Exponential time:
2^{n} truth assignments for n variables
n ! possible TSP tours of n vertices
$\binom{n}{k}$ possible k element subsets of n vertices
...and to date, every alg, even much less-obvious ones, are slow, too

P vs NP

Theory
P = NP ?
Open Problem!
I bet against it

Practice
Many interesting, useful, natural, well-studied problems known to be NP-complete
With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

Another NP problem: Vertex Cover

Input: Undirected graph $G=(V, E)$, integer k.
Output: True iff there is a subset C of V of size $\leq \mathrm{k}$ such that every edge in E is incident to at least one vertex in C.

Example: Vertex cover of size ≤ 2.

In NP? Exercise

$$
8
$$

$$
x_{0}^{80}
$$

3 SAT \leq_{p} VertexCover

3 SAT \leq_{p} VertexCover

3SAT $\leq \mathrm{p}$ VertexCover

3SAT $\leq \mathrm{p}$ VertexCover

VertexCover Instance:
$-k=2 q$
$-G=(V, E)$
$-\mathrm{V}=\{[\mathrm{i}, \mathrm{j}] \mid 1 \leq \mathrm{i} \leq \mathrm{q}, 1 \leq \mathrm{j} \leq 3\}$
$-E=\left\{([i, j],[k, l]) \mid i=k\right.$ or $\left.y_{i j}=\neg y_{k \mid}\right\}$

3 SAT \leq_{p} VertexCover

112

Correctness of " 3 SAT \leq_{p} VertexCover"

Summary of reduction function f: Given formula, make graph G with one group per clause, one node per literal. Connect each to all nodes in same group, plus complementary literals ($x, \neg x$). Output graph G plus integer $k=2$ * number of clauses. Note: f does not know whether formula is satisfiable or not; does not know if G has k-cover; does not try to find satisfying assignment or cover.
Correctness:

- Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
- Show c in 3-SAT iff $f(\mathrm{c})=(\mathrm{G}, \mathrm{k})$ in VertexCover:
(\Rightarrow) Given an assignment satisfying c, pick one true literal per clause. Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle edges; only true literals (but perhaps not all true literals) uncovered, so at least one end of every ($\mathrm{x}, \neg \mathrm{x}$) edge is covered.
(\Leftarrow) Given a k -vertex cover in G , uncovered labels define a valid (perhaps partial) truth assignment since no $(x, \neg x)$ pair uncovered. It satisfies c since there is one uncovered node in each clause triangle (else some other clause triangle has $>$ I uncovered node, hence an uncovered edge.)

