
Lecture 21	
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Review from previous lecture	


P  ⊆ NP ⊆ Exp; at least one containment is proper	


Examples in NP:	

	
SAT, short/long paths, Euler/Ham tours, clique, indp set…	


Common feature:	

	
“… there is a …”	


(and some related problems do not appear to share this 
feature: UnSAT, maxClique, MostlyLongPaths, …)	
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Euler Tour	

2-SAT	


2-Coloring	

Min Cut	


Shortest Path	
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Hamilton Tour	

3-SAT	


3-Coloring	

Max Cut	


Longest Path	


Similar pairs; seemingly 
different computationally!

Superficially different; 
sim

ilar com
putationally!

Some Problem Pairs	
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The most obvious algorithm for most of these 
problems is brute force:	


try all possible hints; check each one to see if it works.	

Exponential time:	


2n truth assignments for n variables	


n! possible TSP tours of n vertices	


     possible k element subsets of n vertices	


etc.	


…and to date, every alg, even much less-obvious 
ones, are slow, too 	
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Solving NP problems without hints	
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P vs NP	


Theory	

P = NP ?	


Open Problem!	

I bet against it	


Practice	

Many interesting, useful, 
natural, well-studied 
problems known to be 
NP-complete	

With rare exceptions, no 
one routinely succeeds in 
finding exact solutions to 
large, arbitrary instances	
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Another NP problem: ���
Vertex Cover	


Input: Undirected graph G = (V, E), integer k.	

Output: True iff there is a subset C of V of ���
size ≤ k such that every edge in E is incident to at 
least one vertex in C.	


Example: Vertex cover of size ≤ 2.	


In NP?  Exercise	
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3SAT ≤p VertexCover 	
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3SAT ≤p VertexCover 	
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3SAT ≤p VertexCover 	
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k=6 

3SAT ≤p VertexCover 	
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k=6 

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	


(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)	
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f                                                                           =	


3-SAT Instance:!
– Variables: x1, x2, …     !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ( [i,j], [k,l] ) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	
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k=6 

3SAT ≤p VertexCover 	
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Correctness of “3SAT ≤p VertexCover”	


Summary of reduction function f:  Given formula, make graph G with one group 
per clause, one node per literal.  Connect each to all nodes in same group, plus 
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of 
clauses.  Note: f does not know whether formula is satisfiable or not; does not know if 
G has k-cover; does not try to find satisfying assignment or cover.	

Correctness:	

 • Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.  	

 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Add other 
2 nodes of each triangle to cover.  Show it is a cover: 2 per triangle cover triangle 
edges; only true literals (but perhaps not all true literals) uncovered, so at least 
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) 
truth assignment since no (x, ¬x) pair uncovered.  It satisfies c since there is one 
uncovered node in each clause triangle (else some other clause triangle has > 1 
uncovered node, hence an uncovered edge.)	



