Lecture 21

78



Review from previous lecture

P & NP & Exp; at least one containment is proper
Examples in NP:

SAT, short/long paths, Euler/Ham tours, clique, indp set...
Common feature:

“...thereisa...”

(and some related problems do not appear to share this
feature: UnSAT, maxClique, MostlyLongPaths, ...)

79



Some Problem Pairs

Euler Tour
2-SAT
2-Coloring
Min Cut
Shortest Path

Hamilton Tour
3-SAT
3-Coloring
Max Cut
Longest Path

Similar pairs; seemingly

different computationally

>

Ajreuoneindwoo Jejiwis
‘lualaylp Ajeroiiadng

-

80




Solving NP problems without hints

The most obvious algorithm for most of these
problems is brute force:
try all possible hints; check each one to see if it works.
Exponential time:
2" truth assighments for n variables
n! possible TSP tours of n vertices
(Z) possible k element subsets of n vertices

etc.

...and to date, every alg, even much less-obvious
ones, are slow, too

85



Theory
P=NP?
Open Problem!
| bet against it

P vs NP

Practice

Many interesting, useful,
natural, well-studied
problems known to be
NP-complete

With rare exceptions, no
one routinely succeeds in
finding exact solutions to
large, arbitrary instances

86



Another NP problem:
Vertex Cover

Input: Undirected graph G = (V, E), integer k.

Output: True iff there is a subset C of V of
size < k such that every edge in E is incident to at
least one vertex in C.

Example: Vertex cover of size < 2.

E

In NP? Exercise

|04



3SAT <, VertexCover

106



3SAT <, VertexCover

107



3SAT <, VertexCover

108



3SAT <, VertexCover

e

X P/




3SAT <, VertexCover

(X; V Xy V=X3) A (X, VoXyVaX3) A (=X, V X;)

110




3SAT <, VertexCover

\
3-SAT Instance:
— Variables: x4, X,, ... —
— Literals: Vip 1= i<qg,1=<j=<3
—Clauses: c,=y,; vy, VY3 1=i=sq
—Formula:c=c; ACy A ... A Cy
/
VertexCover Instance:
— k=29
- G=(V,E)

~V={[ijjl1=isq 1=j=<3)
—E={([ijl, [kI]) li=kory;= =y}




3SAT <, VertexCover

e

X P/




Correctness of “3SAT <, VertexCover”

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, =x). Output graph G plus integer k = 2 * number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-cover; does not try to find satisfying assignment or cover.

Correctness:

» Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward.

» Show c in 3-SAT iff f(c)=(G,k) in VertexCover:

(=) Given an assignment satisfying c, pick one true literal per clause. Add other
2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle
edges; only true literals (but perhaps not all true literals) uncovered, so at least
one end of every (x, —x) edge is covered.

(=) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial)
truth assignment since no (X, —x) pair uncovered. It satisfies c since there is one
uncovered node in each clause triangle (else some other clause triangle has > |
uncovered node, hence an uncovered edge.)



