
Lecture 22	

108	

109	

k=6

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

3SAT ≤p VertexCover 	

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)	

110	

f =	

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ i ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

VertexCover Instance:!
–  k = 2q!
–  G = (V, E)!
–  V = { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!

–  E = { ([i,j], [k,l]) | i = k or yij = ¬ykl }!

3SAT ≤p VertexCover 	

111	

Correctness of “3SAT ≤p VertexCover”	

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, ¬x). Output graph G plus integer k = 2 * number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-cover; does not try to find satisfying assignment or cover.	

Correctness:	

 • Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward. 	

 • Show c in 3-SAT iff f(c)=(G,k) in VertexCover: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause. Add other
2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle
edges; only true literals (but perhaps not all true literals) uncovered, so at least
one end of every (x, ¬x) edge is covered. ���
(⇐) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial)
truth assignment since no (x, ¬x) pair uncovered. It satisfies c since there is one
uncovered node in each clause triangle (else some other clause triangle has > 1
uncovered node, hence an uncovered edge.)	

112	

(x1∨x2∨¬x3)∧(x1∨¬x2∨¬x3)∧(¬x1∨x3)!

x1! x1!

x3!

x2! ¬x2!

¬x3! ¬x3!

¬x1!

x3!

Utility of “3SAT ≤p VertexCover”	

Suppose we had a fast algorithm ���
for VertexCover, then we could ���
get a fast algorithm for 3SAT:	

Given 3-CNF formula w, build Vertex���
Cover instance y = f(w) as above, run the fast ���
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES,
y has a vertex cover of the given size”	

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
VertexCover either.	

113	

“3SAT ≤p VertexCover” Retrospective	

Previous slide: two suppositions	

Somewhat clumsy to have to state things that way.	

Alternative: abstract out the key elements, give it a name
(“polynomial time mapping reduction”), then properties like
the above always hold. 	

119	

Polynomial-Time Reductions	

Definition: Let A and B be two problems.	

We say that A is polynomially (mapping) reducible to
B (A ≤p B) if there exists a polynomial-time
algorithm f that converts each instance x of problem
A to an instance f(x) of B such that: ���

x is a YES instance of A iff f(x) is a YES instance of B	

x ∈ A ⇔ f(x) ∈ B 	

120	

polynomial

W
hy

 th
e

no
ta

tio
n?

Polynomial-Time Reductions (cont.)	

Define: A ≤p B “A is polynomial-time reducible to
B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B 	

“complexity of A” ≤ “complexity of B” + “complexity of f”	

(1) A ≤p B and B ∈ P ⇒ A ∈ P 	

(2) A ≤p B and A ∉ P ⇒ B ∉ P 	

(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)	

122	

Two definitions of “A ≤p B”	

Some books use more general defn: “could solve A
in poly time, if I had a poly time subroutine for B.”	

Defn on previous slides is special case where you
only get to call the subroutine once, and must
report its answer.	

This special case is used in ~98% of all reductions
(And is the only one used in Ch 7, I think.)	

K
ar

p

C

oo
k	

124	

NP-Completeness	

Definition: Problem B is NP-hard if
every problem in NP is polynomially
reducible to B.	

Definition: Problem B is NP-complete
if:	

(1) B belongs to NP, and 	

(2) B is NP-hard.	

NP!

P!

Exp!

NP-Hard	

NP-Complete	

