Lecture 22

108

3SAT <, VertexCover

(X; V Xy V=X3) A (X, VoXyVaX3) A (=X, V X;)

109

3SAT <, VertexCover

3-SAT Instance:

— Variables: x4, X,, ...
— Literals: Vip 1= i<qg,1=<j=<3
—Clauses: c,=y,; vy, VY3 1=i=sq

—Formula:c=c; ACy A ... A Cy

\

/

— k=29
- G=(V,E)

VertexCover Instance:

~V={[ijjl1=isq 1=j=<3)
—E={([ijl, [kI]) li=kory;= =y}

110

Correctness of “3SAT <, VertexCover”

Summary of reduction function f: Given formula, make graph G with one group
per clause, one node per literal. Connect each to all nodes in same group, plus
complementary literals (x, =x). Output graph G plus integer k = 2 * number of
clauses. Note: f does not know whether formula is satisfiable or not; does not know if
G has k-cover; does not try to find satisfying assignment or cover.

Correctness:

» Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward.

» Show c in 3-SAT iff f(c)=(G,k) in VertexCover:

(=) Given an assignment satisfying c, pick one true literal per clause. Add other
2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle
edges; only true literals (but perhaps not all true literals) uncovered, so at least
one end of every (x, —=x) edge is covered.

(=) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial)
truth assignment since no (X, —x) pair uncovered. It satisfies c since there is one
uncovered node in each clause triangle (else some other clause triangle has > |
uncovered node, hence an uncovered edge.)

Utility of “3SAT <, VertexCover”

Suppose we had a fast algorithm
for VertexCover, then we could
get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Vertex
Cover instance y = f(w) as above, run the fast
VC alg on y; say “YES, w is satisfiable” iff VC alg says “YES,

y has a vertex cover of the given size”

On the other hand, suppose no fast alg is possible
for 3SAT, then we know none is possible for
VertexCover either.

112

“3SAT =, VertexCover” Retrospective

Previous slide: two suppositions
Somewhat clumsy to have to state things that way.

Alternative: abstract out the key elements, give it a name
(“polynomial time mapping reduction”), then properties like
the above always hold.

113

Polynomial-Time Reductions

Definition: Let A and B be two problems.

We say that A is polynomially (mapping) reducible to
B (A =<, B) if there exists a polynomial-time
algorithm f that converts each instance x of problem

A to an instance f(x) of B such that:

x is a YES instance of A iff f(x) is a YES instance of B

XxXEA <« f(x)EB

119

Polynomial-Time Reductions (cont)

Define: A<, B “A is polynomial-time reducible to

B”, iff there is a polynomial-time computable
function f such that: x€EA < f(x) €B

“complexity of A” < “complexity of B” + “complexity of f”

() As,Band BEP = AEP
(2) A<,B and AEZP = BEP
(3) A<,B and B, C = A< C (transitivity)

120

Two definitions of “A <, B”

Some books use more general defn: “could solve A

. by 0
in poly time, if | had a poly time subroutine for B. S
Defn on previous slides is special case where you N
only get to call the subroutine once, and must S

report its answer.

This special case is used in ~98% of all reductions
(And is the only one used in Ch 7, | think.)

122

NP-Completeness

Definition: Problem B is NP-hard if
every problem in NP is polynomially
reducible to B.

Definition: Problem B is NP-complete
if:

(1) B belongs to NP, and

(2) B is NP-hard.

NP-Hard

NP-Complete

124

