## Lecture 23

## Polynomial-Time Reductions (cont.)

Define: A $\leq_{p}$ B "A is polynomial-time reducible to $B$ ", iff there is a polynomial-time computable function $f$ such that: $x \in A \Leftrightarrow f(x) \in B$
"complexity of $A$ " $\leq$ "complexity of $B$ " + "complexity of f"
(I) $A \leq_{p} B$ and $B \in P \Rightarrow A \in P$
(2) $A \leq_{p} B$ and $A \notin P \Rightarrow B \notin P$
(3) $A \leq_{p} B$ and $B \leq_{p} C \Rightarrow A \leq_{p} C$ (transitivity)

## NP-Completeness

Definition: Problem B is NP-hard if every problem in NP is polynomially reducible to $B$.

Definition: Problem B is NP-complete if:
(I) B belongs to NP, and
(2) B is NP-hard.


127

## "NP-completeness"

Cool concept, but are there any such problems?

Yes!

Cook's theorem: SAT is NP-complete

## Why is SAT NP-complete?

Cook's proof is somewhat involved; details later. But its essence is not so hard to grasp:

```
Generic "NP" problem:
is there a poly size "solution,"
verifiable by computer in poly time
```

"SAT":
is there a (poly size) assignment satisfying the formula

Encode "solution" using Boolean variables. SAT mimics "is there a solution" via "is there an assignment". Digital computers just do Boolean logic, and "SAT" can mimic that, too, hence can verify that the assignment actually encodes a solution.

## Proving a problem is NP-complete

Technically, for condition (2) we have to show that every problem in NP is reducible to B . (Yikes! Sounds like a lot of work.)
For the very first NP-complete problem (SAT) this had to be proved directly.
However, once we have one NP-complete problem, then we don't have to do this every time.
Why? Transitivity.

## Alt way to prove NP-completeness

Lemma: Problem B is NP-complete if:
(I) B belongs to NP, and
(2') $A$ is polynomial-time reducible to $B$, for some problem A that is NP-complete.

That is, to show (2') given a new problem $B$, it is sufficient to show that SAT or any other NPcomplete problem is polynomial-time reducible to B.

## Ex: VertexCover is NP-complete

3-SAT is NP-complete (shown by S. Cook)
3 -SAT $\leq_{p}$ VertexCover
VertexCover is in NP (we showed this earlier)
Therefore VertexCover is also NP-complete

So, poly-time algorithm for VertexCover would give poly-time algs for everything in NP

## NP-complete problem: Clique

Input: Undirected graph $G=(V, E)$, integer $k$.
Output: True iff there is a subset $C$ of $V$ of size $\geq \mathrm{k}$ such that all vertices in C are connected to all other vertices in C .

Example: Clique of size $\geq 4$

In NP? Exercise


## $3 S A T \leq_{p}$ Clique



## $3 S A T \leq_{p}$ Clique

$$
\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3}\right)
$$



## $3 S A T \leq p$ Clique



## Clique Instance:

$$
\begin{aligned}
& -K=q \\
& -G=(V, E) \\
& -V=\{[i, j] \mid 1 \leq i \leq q, 1 \leq j \leq 3\} \\
& -E=\left\{([i, j],[k, I]) \mid i \neq k \text { and } y_{i j} \neq \neg y_{k l}\right\}
\end{aligned}
$$

## Correctness of " 3 -SAT $\leq_{p}$ Clique"

Summary of reduction function f :
Given formula, make graph $G$ with column of nodes per clause, one node per literal. Connect each to all nodes in other columns, except complementary literals ( $\mathrm{x}, \neg \mathrm{x}$ ). Output graph G plus integer $k=$ number of clauses. Note: $f$ does not know whether formula is satisfiable or not; does not know if $G$ has $k$-clique; does not try to find satisfying assignment or clique.
Correctness:
Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
Show c in 3-SAT iff $\mathrm{f}(\mathrm{c})=(\mathrm{G}, \mathrm{k})$ in Clique:
$(\Rightarrow)$ Given an assignment satisfying c, pick one true literal per clause. Show corresponding nodes in G are k -clique.
$(\Leftarrow)$ Given a k-clique in G , clique labels define a truth assignment; show it satisfies
c. Note: literals in a clique are a valid truth assignment [no " $(x, \neg x)$ " edges] \& $k$ nodes must be I per column, [no edges within columns].

## 3-SAT $\leq_{p}$ UndirectedHamPath

Example: $\quad(x \vee y) \wedge(\neg x \vee y) \wedge(\neg x \vee \neg y)$



## Ham Path Gadget



Many copies of this 12-node gadget, each with one or more edges connecting each of the 4 corners to other nodes or gadgets (but no other edges to the 8 "internal" nodes).
Claim: There are only 2 Ham paths - one entering at I, exiting at I' (as shown); the other (by symmetry) $0 \rightarrow 0$ '
Pf: Note *: at I ${ }^{\text {st }}$ visit to any column, must next go to middle node in column, else it will subsequently become an untraversable "dead end." WLOG, suppose enter at I. By ${ }^{*}$, must then go down to 0.2 cases:
Case a: (top left) If next move is to right, then * forces path up, left is blocked, so right again, etc; out at I'.
Case b: (top rt) if exit at 0 , then path must eventually reenter at 0 ' or $I$ '. * forces next move to be up/down to the other of $0^{\prime} / I^{\prime}$. Must then go left to reach the 2 middle columns, but there's no exit from them. So case b is impossible.

