
Lecture 23	
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Polynomial-Time Reductions (cont.)	



Define: A ≤p B  “A is polynomial-time reducible to 
B”, iff there is a polynomial-time computable 
function f such that:   x ∈ A   ⇔   f(x) ∈ B 	



“complexity of A” ≤ “complexity of B” + “complexity of f”	



(1)  A ≤p B  and  B ∈ P   ⇒   A ∈ P 	


(2)  A ≤p B  and  A ∉ P   ⇒   B ∉ P  	


(3)  A ≤p B  and  B ≤p C   ⇒   A ≤p C  (transitivity)	
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NP-Completeness	



Definition: Problem B is NP-hard if 
every problem in NP is polynomially 
reducible to B.	



Definition: Problem B is NP-complete 
if:	



(1) B belongs to NP, and 	



(2) B is NP-hard.	



NP!

P!

Exp!

NP-Hard	



NP-Complete	





“NP-completeness”	



Cool concept, but are there ���
any such problems?	



Yes!	



Cook’s theorem: SAT is NP-complete	
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Why is SAT NP-complete?	



Cook’s proof is somewhat involved; details later.  
But its essence is not so hard to grasp:	
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Encode “solution” using Boolean variables.  SAT mimics “is there a solution” 
via “is there an assignment”.  Digital computers just do Boolean logic, and 
“SAT” can mimic that, too, hence can verify that the assignment actually 
encodes a solution.	



Generic “NP” problem:	


is there a poly size “solution,” 
verifiable by computer in poly time	



“SAT”:	


is there a (poly size) assignment 
satisfying the formula
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Proving a problem is NP-complete	



Technically, for condition (2) we have to show that 
every problem in NP is reducible to B.  ���
(Yikes!  Sounds like a lot of work.)	



For the very first NP-complete problem (SAT) this 
had to be proved directly. 	



However, once we have one NP-complete problem, 
then we don’t have to do this every time.	



Why? Transitivity.	
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Alt way to prove NP-completeness	



Lemma: Problem B is NP-complete if:	


(1)  B belongs to NP, and 	


(2’) A is polynomial-time reducible to B, for some problem 
A that is NP-complete.	



That is, to show (2’) given a new problem B, it is 
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to 
B.	
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Ex: VertexCover is NP-complete	



3-SAT is NP-complete (shown by S. Cook)	



3-SAT ≤p VertexCover	


VertexCover is in NP (we showed this earlier)	


Therefore VertexCover is also NP-complete	



So, poly-time algorithm for VertexCover would give 
poly-time algs for everything in NP	
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NP-complete problem: Clique	



Input: Undirected graph G = (V, E), integer k.	


Output: True iff there is a subset C of V of   ���
size ≥ k such that all vertices in C are connected to 
all other vertices in C.	



Example: 	

Clique of size ≥ 4	



In NP?  Exercise	
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k=3 

3SAT ≤p Clique 	
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k=3 

3SAT ≤p Clique 	
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k=3 

3SAT ≤p Clique 	
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k=3 

3SAT ≤p Clique 	
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x1! x1! x3!

x2! ¬x2!

¬x3! ¬x3! ¬x1!

k=3 

3SAT ≤p Clique 	



(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1  ∨ x3)	





3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

Clique Instance:!
–  K != q!
–  G!= (V, E)!
–  V != { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!
–  E != { ( [i,j], [k,l] ) | i ≠ k and yij ≠ ¬ykl }!

3SAT ≤p Clique 	



f                                      	

 	

 	

       =	
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Correctness of “3-SAT ≤p Clique”	



Summary of reduction function f: ���
Given formula, make graph G with column of nodes per clause, one node per 
literal.  Connect each to all nodes in other columns, except complementary 
literals (x, ¬x). Output graph G plus integer k = number of clauses.  Note: f does 
not know whether formula is satisfiable or not; does not know if G has k-clique; does not 
try to find satisfying assignment or clique.	


Correctness:	


Show f poly time computable: A key point is that graph size is polynomial in 
formula size; mapping basically straightforward.  	


Show c in 3-SAT iff f(c)=(G,k) in Clique: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause.  Show 
corresponding nodes in G are k-clique. ���
(⇐) Given a k-clique in G, clique labels define a truth assignment; show it satisfies 
c.  Note: literals in a clique are a valid truth assignment [no “(x, ¬x)” edges] & k 
nodes must be 1 per column, [no edges within columns].  	





Example:	



3-SAT ≤p UndirectedHamPath	



(Note: this is not 
the same as the 
reduction given in 
the book.)	



(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)   

c1	



c2	

 c3	



s	

 t	


¬x  ¬y 

x  y 



x	



Ham Path Gadget	



Many copies of this 12-node gadget, each with one or more edges 
connecting each of the 4 corners to other nodes or gadgets (but no 
other edges to the 8 “internal” nodes).	



Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as 
shown); the other (by symmetry) 0→0’	



Pf: Note *: at 1st visit to any column, must next go to middle node in column, else 
it will subsequently become an untraversable “dead end.”  ���
WLOG, suppose enter at 1.  By *, must then go down to 0.  2 cases:	



Case a: (top left) If next move is to right, then * forces path up, left is blocked, so 
right again, etc; out at 1’.	



Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’.  * forces 
next move to be up/down to the other of 0’/1’.  Must then go left to reach the 
2 middle columns,  but there’s no exit from them.  So case b is impossible.	
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1	



0	



1’	



0’	

0’	



1	



0	



1’	




