
Lecture 23	

125	

126	

polynomial

W
hy

 th
e

no
ta

tio
n?

Polynomial-Time Reductions (cont.)	

Define: A ≤p B “A is polynomial-time reducible to
B”, iff there is a polynomial-time computable
function f such that: x ∈ A ⇔ f(x) ∈ B 	

“complexity of A” ≤ “complexity of B” + “complexity of f”	

(1) A ≤p B and B ∈ P ⇒ A ∈ P 	

(2) A ≤p B and A ∉ P ⇒ B ∉ P 	

(3) A ≤p B and B ≤p C ⇒ A ≤p C (transitivity)	

127	

NP-Completeness	

Definition: Problem B is NP-hard if
every problem in NP is polynomially
reducible to B.	

Definition: Problem B is NP-complete
if:	

(1) B belongs to NP, and 	

(2) B is NP-hard.	

NP!

P!

Exp!

NP-Hard	

NP-Complete	

“NP-completeness”	

Cool concept, but are there ���
any such problems?	

Yes!	

Cook’s theorem: SAT is NP-complete	

128	

Why is SAT NP-complete?	

Cook’s proof is somewhat involved; details later.
But its essence is not so hard to grasp:	

129	

Encode “solution” using Boolean variables. SAT mimics “is there a solution”
via “is there an assignment”. Digital computers just do Boolean logic, and
“SAT” can mimic that, too, hence can verify that the assignment actually
encodes a solution.	

Generic “NP” problem:	

is there a poly size “solution,”
verifiable by computer in poly time	

“SAT”:	

is there a (poly size) assignment
satisfying the formula

135	

Proving a problem is NP-complete	

Technically, for condition (2) we have to show that
every problem in NP is reducible to B. ���
(Yikes! Sounds like a lot of work.)	

For the very first NP-complete problem (SAT) this
had to be proved directly. 	

However, once we have one NP-complete problem,
then we don’t have to do this every time.	

Why? Transitivity.	

136	

Alt way to prove NP-completeness	

Lemma: Problem B is NP-complete if:	

(1) B belongs to NP, and 	

(2’) A is polynomial-time reducible to B, for some problem
A that is NP-complete.	

That is, to show (2’) given a new problem B, it is
sufficient to show that SAT or any other NP-
complete problem is polynomial-time reducible to
B.	

138	

Ex: VertexCover is NP-complete	

3-SAT is NP-complete (shown by S. Cook)	

3-SAT ≤p VertexCover	

VertexCover is in NP (we showed this earlier)	

Therefore VertexCover is also NP-complete	

So, poly-time algorithm for VertexCover would give
poly-time algs for everything in NP	

139	

NP-complete problem: Clique	

Input: Undirected graph G = (V, E), integer k.	

Output: True iff there is a subset C of V of ���
size ≥ k such that all vertices in C are connected to
all other vertices in C.	

Example: 	

Clique of size ≥ 4	

In NP? Exercise	

140	

k=3

3SAT ≤p Clique 	

141	

k=3

3SAT ≤p Clique 	

142	

k=3

3SAT ≤p Clique 	

143	

k=3

3SAT ≤p Clique 	

144	

x1! x1! x3!

x2! ¬x2!

¬x3! ¬x3! ¬x1!

k=3

3SAT ≤p Clique 	

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)	

3-SAT Instance:!
– Variables: x1, x2, … !
– Literals: yi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ 3!
– Clauses: ci = yi1 ∨ yi2 ∨ yi3, 1 ≤ I ≤ q!
– Formula: c = c1 ∧ c2 ∧ … ∧ cq!

Clique Instance:!
–  K != q!
–  G!= (V, E)!
–  V != { [i,j] | 1 ≤ i ≤ q, 1 ≤ j ≤ 3 }!
–  E != { ([i,j], [k,l]) | i ≠ k and yij ≠ ¬ykl }!

3SAT ≤p Clique 	

f 	

 	

 	

 =	

146	

Correctness of “3-SAT ≤p Clique”	

Summary of reduction function f: ���
Given formula, make graph G with column of nodes per clause, one node per
literal. Connect each to all nodes in other columns, except complementary
literals (x, ¬x). Output graph G plus integer k = number of clauses. Note: f does
not know whether formula is satisfiable or not; does not know if G has k-clique; does not
try to find satisfying assignment or clique.	

Correctness:	

Show f poly time computable: A key point is that graph size is polynomial in
formula size; mapping basically straightforward. 	

Show c in 3-SAT iff f(c)=(G,k) in Clique: ���
(⇒) Given an assignment satisfying c, pick one true literal per clause. Show
corresponding nodes in G are k-clique. ���
(⇐) Given a k-clique in G, clique labels define a truth assignment; show it satisfies
c. Note: literals in a clique are a valid truth assignment [no “(x, ¬x)” edges] & k
nodes must be 1 per column, [no edges within columns]. 	

Example:	

3-SAT ≤p UndirectedHamPath	

(Note: this is not
the same as the
reduction given in
the book.)	

(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

c1	

c2	

 c3	

s	

 t	

¬x ¬y

x y

x	

Ham Path Gadget	

Many copies of this 12-node gadget, each with one or more edges
connecting each of the 4 corners to other nodes or gadgets (but no
other edges to the 8 “internal” nodes).	

Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as
shown); the other (by symmetry) 0→0’	

Pf: Note *: at 1st visit to any column, must next go to middle node in column, else
it will subsequently become an untraversable “dead end.” ���
WLOG, suppose enter at 1. By *, must then go down to 0. 2 cases:	

Case a: (top left) If next move is to right, then * forces path up, left is blocked, so
right again, etc; out at 1’.	

Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’. * forces
next move to be up/down to the other of 0’/1’. Must then go left to reach the
2 middle columns, but there’s no exit from them. So case b is impossible.	

149	

1	

0	

1’	

0’	

0’	

1	

0	

1’	

