
Lecture 24	
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Example:	


3-SAT ≤p UndirectedHamPath	


(Note: this is not 
the same as the 
reduction given in 
the book.)	


(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)   

x ∨ y	


¬x ∨ y	
 ¬x ∨ ¬y	


s	
 t	

¬x  ¬y 

x  y 



3-SAT ≤p UndirectedHamPath	


Time for the reduction: to be computable in poly time it is necessary (but 
not sufficient) that G’s size is polynomial in n, the length of the formula. 
Easy to see this is true, since G has q + 12 (p + m) + 1 = O(n) vertices, 
where q is the number of clauses, p is the number of instances of literals, 
and m is the number of variables.  Furthermore, the structure is simple 
and regular, given the formula, so easily / quickly computable, but details 
are omitted. (More detail expected in your homeworks, e.g.)	
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x ∨ y	


¬x ∨ y	
 ¬x ∨ ¬y	


s	
 t	

¬x  ¬y 

y x  



Ham Path Gadget	

X	


Many copies of this 12-node gadget, each with one or more edges 
connecting each of the 4 corners to other nodes or gadgets (but no 
other edges to the 8 “internal” nodes).	


Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as 
shown); the other (by symmetry) 0→0’	


Pf: Note *: at 1st visit to any column, must next go to middle node in column, else 
it will subsequently become an untraversable “dead end.”  ���
WLOG, suppose enter at 1.  By *, must then go down to 0.  2 cases:	


Case a: (top left) If next move is to right, then * forces path up, left is blocked, so 
right again, * forces down, etc; out at 1’.	


Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’.  * forces 
next move to be up/down to the other of 0’/1’.  Must then go left to reach the 
2 middle columns,  but there’s no exit from them.  So case b is impossible.	
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1	


0	


1’	


0’	
0’	


1	


0	


1’	




Correctness, I	


Ignoring the clause nodes, there are 2m s-t paths along the 
“main chain,” one for each of 2m assignments to m variables.	


If f is satisfiable, pick a satisfying assignment, and pick a true 
literal in each clause.  Take the corresponding “main chain” 
path; add a detour to/from ci for the true literal chosen from 
clause i.  Result is a Hamilton path.	
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…∨  xk  ∨…	


xk=T	


xk chosen in clause ci 	


x ∨ y	


¬x ∨ y	
 ¬x ∨ ¬y	


s	
 t	

¬x  ¬y 

y x  



Correctness, II	


Conversely, suppose G has a Ham path.  Obviously, the path must 
detour from the main chain to each clause node ci.  If it does not return 
immediately to the next gadget on main chain, then (by gadget properties 
on earlier slide), that gadget cannot be traversed.  Thus, the Ham path 
must consistently use “top chain” or consistently “bottom chain” exits to 
clause nodes from each variable gadget.  If top chain, set that variable 
True; else set it False.  Result is a satisfying assignment, since each clause 
is visited from a “true” literal.	
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Detour only possible 
on an xk=T subpath	


X	


xk=T	
 And must immediately return	


x ∨ y	


¬x ∨ y	
 ¬x ∨ ¬y	


s	
 t	

¬x  ¬y 

y x  

…∨  xk  ∨…	




Subset-Sum, AKA Knapsack	


KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C }	


wi’s and C encoded in radix r ≥ 2.  (Decimal used in 
following example.)	


Theorem:  3-SAT  ≤p  KNAP	

Pf: given formula with p variables & q clauses, build KNAP instance with ���

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal” 
weights, H.O. p digits mark which variable; L.O. q digits show which 
clauses contain it. Two “slack” weights per clause mark that clause. ���
See example below.	
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3-SAT  ≤p  KNAP	


Variables	
 Clauses	

x	
 y	
 (x ∨ y) 	
 (¬x ∨ y) 	
 (¬x ∨ ¬y) 	


Li
te

ra
ls
	
 w1  (  x)	
 1	
 0	
 1	
 0	
 0	


w2  (¬x) 	
 1	
 0	
 0	
 1	
 1	

w3  (  y)	
 1	
 1	
 1	
 0	

w4  (¬y)	
 1	
 0	
 0	
 1	


Sl
ac

k	


w5  (s11)	
 1	
 0	
 0	

w6  (s12)	
 1	
 0	
 0	

w7  (s21)	
 1	
 0	

w8  (s22)	
 1	
 0	

w9  (s31)	
 1	

w10 (s32)	
 1	

C	
 1	
 1	
 3	
 3	
 3	
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Formula: (x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)   



Correctness	


Poly time for reduction is routine; details omitted	

If formula is satisfiable, select the literal weights corresponding to the 

true literals in a satisfying assignment. If that assignment satisfies k 
literals in a clause, also select (3 – k) of the “slack” weights for that 
clause.  Total will equal C.	


Conversely, suppose KNAP instance has a solution.  Note ≤ 5 one’s per 
column, so no “carries” in sum (recall – weights are decimal); i.e., 
columns are decoupled.  Since H.O. p digits of C are 1, exactly one of 
each pair of literal weights included in the subset, so it defines a valid 
assignment. Since L.O. q digits of C are 3, but at most 2 “slack” 
weights contribute to it, at least one of the selected literal weights 
must be 1 in that clause, hence the assignment satisfies the formula.	
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