
Lecture 24	

149	

Example:	

3-SAT ≤p UndirectedHamPath	

(Note: this is not
the same as the
reduction given in
the book.)	

(x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

x ∨ y	

¬x ∨ y	
 ¬x ∨ ¬y	

s	
 t	

¬x ¬y

x y

3-SAT ≤p UndirectedHamPath	

Time for the reduction: to be computable in poly time it is necessary (but
not sufficient) that G’s size is polynomial in n, the length of the formula.
Easy to see this is true, since G has q + 12 (p + m) + 1 = O(n) vertices,
where q is the number of clauses, p is the number of instances of literals,
and m is the number of variables. Furthermore, the structure is simple
and regular, given the formula, so easily / quickly computable, but details
are omitted. (More detail expected in your homeworks, e.g.)	

151	

x ∨ y	

¬x ∨ y	
 ¬x ∨ ¬y	

s	
 t	

¬x ¬y

y x

Ham Path Gadget	

X	

Many copies of this 12-node gadget, each with one or more edges
connecting each of the 4 corners to other nodes or gadgets (but no
other edges to the 8 “internal” nodes).	

Claim: There are only 2 Ham paths – one entering at 1, exiting at 1’ (as
shown); the other (by symmetry) 0→0’	

Pf: Note *: at 1st visit to any column, must next go to middle node in column, else
it will subsequently become an untraversable “dead end.” ���
WLOG, suppose enter at 1. By *, must then go down to 0. 2 cases:	

Case a: (top left) If next move is to right, then * forces path up, left is blocked, so
right again, * forces down, etc; out at 1’.	

Case b: (top rt) if exit at 0, then path must eventually reenter at 0’ or 1’. * forces
next move to be up/down to the other of 0’/1’. Must then go left to reach the
2 middle columns, but there’s no exit from them. So case b is impossible.	

152	

1	

0	

1’	

0’	
0’	

1	

0	

1’	

Correctness, I	

Ignoring the clause nodes, there are 2m s-t paths along the
“main chain,” one for each of 2m assignments to m variables.	

If f is satisfiable, pick a satisfying assignment, and pick a true
literal in each clause. Take the corresponding “main chain”
path; add a detour to/from ci for the true literal chosen from
clause i. Result is a Hamilton path.	

153	

…∨ xk ∨…	

xk=T	

xk chosen in clause ci 	

x ∨ y	

¬x ∨ y	
 ¬x ∨ ¬y	

s	
 t	

¬x ¬y

y x

Correctness, II	

Conversely, suppose G has a Ham path. Obviously, the path must
detour from the main chain to each clause node ci. If it does not return
immediately to the next gadget on main chain, then (by gadget properties
on earlier slide), that gadget cannot be traversed. Thus, the Ham path
must consistently use “top chain” or consistently “bottom chain” exits to
clause nodes from each variable gadget. If top chain, set that variable
True; else set it False. Result is a satisfying assignment, since each clause
is visited from a “true” literal.	

154	

Detour only possible
on an xk=T subpath	

X	

xk=T	
 And must immediately return	

x ∨ y	

¬x ∨ y	
 ¬x ∨ ¬y	

s	
 t	

¬x ¬y

y x

…∨ xk ∨…	

Subset-Sum, AKA Knapsack	

KNAP = { (w1, w2, …, wn, C) | a subset of the wi sums to C }	

wi’s and C encoded in radix r ≥ 2. (Decimal used in
following example.)	

Theorem: 3-SAT ≤p KNAP	

Pf: given formula with p variables & q clauses, build KNAP instance with ���

2(p+q) wi’s, each with (p+q) decimal digits. For the 2p “literal”
weights, H.O. p digits mark which variable; L.O. q digits show which
clauses contain it. Two “slack” weights per clause mark that clause. ���
See example below.	

155	

3-SAT ≤p KNAP	

Variables	
 Clauses	

x	
 y	
 (x ∨ y) 	
 (¬x ∨ y) 	
 (¬x ∨ ¬y) 	

Li
te

ra
ls
	
 w1 (x)	
 1	
 0	
 1	
 0	
 0	

w2 (¬x) 	
 1	
 0	
 0	
 1	
 1	

w3 (y)	
 1	
 1	
 1	
 0	

w4 (¬y)	
 1	
 0	
 0	
 1	

Sl
ac

k	

w5 (s11)	
 1	
 0	
 0	

w6 (s12)	
 1	
 0	
 0	

w7 (s21)	
 1	
 0	

w8 (s22)	
 1	
 0	

w9 (s31)	
 1	

w10 (s32)	
 1	

C	
 1	
 1	
 3	
 3	
 3	

156	

Formula: (x ∨ y) ∧ (¬x ∨ y) ∧ (¬x ∨ ¬y)

Correctness	

Poly time for reduction is routine; details omitted	

If formula is satisfiable, select the literal weights corresponding to the

true literals in a satisfying assignment. If that assignment satisfies k
literals in a clause, also select (3 – k) of the “slack” weights for that
clause. Total will equal C.	

Conversely, suppose KNAP instance has a solution. Note ≤ 5 one’s per
column, so no “carries” in sum (recall – weights are decimal); i.e.,
columns are decoupled. Since H.O. p digits of C are 1, exactly one of
each pair of literal weights included in the subset, so it defines a valid
assignment. Since L.O. q digits of C are 3, but at most 2 “slack”
weights contribute to it, at least one of the selected literal weights
must be 1 in that clause, hence the assignment satisfies the formula.	

157	

