Lecture 26

Coping with NP-Completeness

Is your real problem a special subcase?
E.g. 3-SAT is NP-complete, but 2-SAT is not; ditto 3 - vs 2coloring
E.g. you only need planar graphs, or degree 3 graphs, ...?

Guaranteed approximation good enough?
E.g. Euclidean TSP within 2 * Opt in poly time

Fast enough in practice (esp. if n is small),
E.g. clever exhaustive search like backtrack, branch \& bound, pruning
Heuristics - usually a good approximation and/or usually fast

NP-complete problem: TSP

Input: An undirected graph
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with integer edge weights, and an integer b.

Output: YES iff there is a simple cycle in G passing through all vertices (once),

Example:

with total cost \leq b.

TSP - Nearest Neighbor Heuristic

NN Heuristic -go to nearest unvisited vertex

Fact: $N N$ tour can be about $(\log n) \times$ opt, i.e.

$$
\lim _{n \rightarrow \infty} \frac{N N}{O P T} \rightarrow \infty
$$

(above example is not that bad)

2x Approximation to EuclideanTSP

A TSP tour visits all vertices, so contains a spanning tree, so TSP cost is > cost of min spanning tree.

Find MST

Find "DFS" Tour

Shortcut

TSP \leq shortcut $<$ DFST $=2 *$ MST $<2 *$ TSP

Summary

Big-O - good
P - good
Exp - bad
Exp, but hints help? NP
NP-hard, NP-complete - bad (I bet)
To show NP-complete - reductions
NP-complete = hopeless? - no, but you need to lower your expectations: heuristics \& approximations.

Beyond NP

Many complexity classes are worse, e.g. time $2^{2^{n}}, 2^{2^{2^{n}}}, \ldots$
Others seem to be "worse" in a different sense, e.g., not in NP, but still exponential time. E.g., let

$$
\text { Lp = "assignment y satisfies formula } \times \text { ", } \in P
$$

Then :

$$
\begin{aligned}
& \text { SAT }=\left\{x \mid \exists y\langle x, y\rangle \in L_{p}\right\} \\
& \text { UNSAT }=\left\{x \mid \forall y\langle x, y\rangle \in L_{p}\right\} \\
& \text { QBF }_{k}=\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots \partial_{k}\left\langle x, y_{1} \ldots y_{k}\right\rangle \in L_{p}\right\} \\
& \text { QBF }_{\infty}=\left\{x \mid \exists y_{1} \forall y_{2} \exists y_{3} \ldots \quad\left\langle x, y_{1} \ldots\right\rangle \in L_{p}\right\}
\end{aligned}
$$

