Lecture 27

Beyond NP

Many complexity classes are worse, e.g. time $2^{2^{n}}, 2^{2^{2^{n}}}, \ldots$
Others seem to be "worse" in a different sense, e.g., not in NP, but still exponential time. E.g., let

$$
\text { Lp = "assignment y satisfies formula } \times \text { ", } \in P
$$

Then :

$$
\begin{aligned}
& \text { SAT }=\left\{x \mid \exists y\langle x, y\rangle \in L_{p}\right\} \\
& \text { UNSAT }=\left\{x \mid \forall y\langle x, y\rangle \notin L_{p}\right\} \\
& \text { QBF }_{k}=\left\{x \mid \exists y, \forall y_{2} \exists y_{3} \ldots O_{k} y_{k}\left\langle x, y_{1} \ldots y_{k}\right\rangle \in L_{p}\right\} \\
& \text { QBF }_{\infty}=\left\{x \mid \exists y, \forall y_{2} \exists y_{3} \ldots \quad\left\langle x, y_{1} \ldots\right\rangle \in L_{p}\right\}
\end{aligned}
$$

The "Polynomial Hierarchy"

Potential Utility: It is often easy to give such a quantifier-based characterization of a language; doing so suggests (but doesn't prove) whether it is in P, NP, etc. and suggests candidates for reducing to it.

Examples

$\mathrm{QBF}_{\mathrm{k}}$ in \sum_{k}^{p}
Given graph G, integers $j \& k$, is there a set U of $\leq j$ vertices in G such that every k-clique contains a vertex in U ?

Given graph G, integers $\mathrm{j} \& \mathrm{k}$, is there a set U of $\geq \mathrm{j}$ vertices in G such removal of any k edges leaves a Hamilton path in U?

Space Complexity

DTM M has space complexity $S(n)$ if it halts on all inputs, and never visits more than $S(n)$ tape cells on any input of length n .
NTM ...on any input of length n on any computation path.
$\operatorname{DSPACE}(\mathrm{S}(\mathrm{n}))=\{\mathrm{L} \mid \mathrm{L}$ acc by some DTM in space $\mathrm{O}(\mathrm{S}(\mathrm{n}))\}$
$\operatorname{NSPACE}(S(\mathrm{n}))=\{\mathrm{L} \mid \mathrm{L}$ acc by some NTM in space $\mathrm{O}(\mathrm{S}(\mathrm{n}))\}$

Model-independence

As with Time complexity, model doesn't matter much. E.g.:
$\operatorname{SPACE}(\mathrm{n})$ on $\mathrm{DTM} \approx \mathrm{O}(\mathrm{n})$ bytes on your laptop

Why? Simulate each by the other.

Space vs Time

Time T \subseteq Space T

Pf: no time to use more space

Space $T \subseteq$ Time $2^{\text {c } T}$

Pf: if run longer, looping

Space seems more powerful

Intuitively, space is reusable, time isn't

Ex.: SAT $\in \operatorname{DSPACE}(n)$

Pf: try all possible assignments, one after the other

Even more:

$$
\begin{aligned}
& \text { QBF }_{k}=\left\{\exists y_{1} \forall y_{2} \exists y_{3} \ldots \partial_{k} y_{k} x \mid\left\langle x, y_{1} \ldots y_{k}\right\rangle \in L_{p}\right\} \in \operatorname{DSPACE}(n) \\
& \text { QBF }_{\infty}=\left\{\exists y_{1} \forall y_{2} \exists y_{3} \ldots \quad x \mid\left\langle x, y_{1} \ldots\right\rangle \in L_{p}\right\} \in \operatorname{DSPACE}(n)
\end{aligned}
$$

PSPACE $=$ Space $\left(\mathrm{n}^{\mathrm{O}(1)}\right)$
$N P \subseteq P S P A C E$
pf: depth-first search of NTM computation tree

Games

2 player "board" games
E.g., checkers, chess, tic-tac-toe, nim, go, ...

A finite, discrete "game board"
Some pieces placed and/or moved on it
"Perfect information": no hidden data, no randomness
Player I/Player II alternate turns
Defined win/lose configurations (3-in-a-row; checkmate; ...)

$$
\begin{aligned}
& \hline \text { Winning strategy: } \\
& \exists \text { move by player } \mathrm{I} \forall \text { moves by } I I \exists \text { a move by } \mathrm{I} \forall \ldots \text { I wins. }
\end{aligned}
$$

Game Tree

Config:
Where are pieces

Relevant history
Who goes next
Play:

\exists

All moves

Win/lose:

Game Tree

Config:
Where are pieces
Relevant history Who goes next Play:
All moves

Win/lose:

Winning Strategy

Config:
Where are pieces
Relevant history
ш
Who goes next Play:
All moves

Win/lose:

Complexity of 2 person, perfect information games

From above, IF
config (incl. history, etc.) is poly size only poly many successors of one config
each computable in poly time
win/lose configs recognizable in poly time, and
game lasts poly \# moves
THEN
in PSPACE!
Pf: depth-first search of tree, calc node values as you go.

