
Lecture 27	
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Beyond NP	


Many complexity classes are worse, e.g. time 22n
, 222n

, …	


Others seem to be “worse” in a different sense, e.g., not in 
NP, but still exponential time.  E.g., let 	


	
Lp = “assignment y satisfies formula x”, ∈ P	


Then :	

	
SAT = { x | ∃y ⟨x,y⟩∈LP }	


	
UNSAT = { x | ∀y ⟨x,y⟩∉LP }	

	
QBFk = { x | ∃y1∀y2∃y3…   k yk ⟨x,y1…yk⟩∈LP }	


	
QBF∞ = { x | ∃y1∀y2∃y3…        ⟨x,y1…   ⟩∈LP }	
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ΣP2 :  { x | ∃y∀z ⟨x,y,z⟩∈LP } 

⋮ 

ΔP0: 
P 

The “Polynomial Hierarchy”	


ΔP1: P time 
given SAT 

ΣP1 (NP):  
{ x | ∃y ⟨x,y⟩∈LP } 
SAT, Clique, VC, HC, Knap,…  

ΠP1
 (co-NP):  

{ x | ∀y ⟨x,y⟩∈LP }  
UNSAT,… 

ΠP2
 :  { x | ∀y∃z ⟨x,y,z⟩∈LP } 

Potential Utility: It is often easy to give such a quantifier-based 
characterization of a language; doing so suggests (but doesn’t prove) whether it 

is in P, NP, etc. and suggests candidates for reducing to it. 



Examples	


QBFk in ΣPk	


Given graph G, integers j & k, is there a set U of ≤ j vertices 
in G such that every k-clique contains a vertex in U?  	


Given graph G, integers j & k, is there a set U of ≥ j vertices 
in G such removal of any k edges leaves a Hamilton path 
in U?  	
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Space Complexity	


DTM M has space complexity S(n) if it halts on all inputs, and 
never visits more than S(n) tape cells on any input of 
length n.	


NTM …on any input of length n on any computation path.	


DSPACE(S(n)) = { L | L acc by some DTM in space O(S(n)) }	


NSPACE(S(n)) = { L | L acc by some NTM in space O(S(n)) }	
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Model-independence	


As with Time complexity, model doesn’t matter much.  E.g.:	


SPACE(n) on DTM ≈ O(n) bytes on your laptop	


Why? Simulate each by the other.	
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Space vs Time	


Time T ⊆ Space T	


	
Pf: no time to use more space	


Space T ⊆ Time 2cT	


	
Pf: if run longer, looping	
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Space seems more powerful	


Intuitively, space is reusable, time isn’t	


Ex.: SAT ∈ DSPACE(n)	


	
Pf: try all possible assignments, one after the other	


Even more: ���
QBFk =  { ∃y1∀y2∃y3…   k yk x | ⟨x,y1…yk⟩∈LP }∈ DSPACE(n)  ���
QBF∞ = { ∃y1∀y2∃y3…         x | ⟨x,y1… ⟩∈LP } ∈ DSPACE(n)	
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PSPACE = Space(nO(1))	


NP ⊆ PSPACE	


	
pf: depth-first search of NTM computation tree	


215	




Games	


2 player “board” games	


E.g., checkers, chess, tic-tac-toe, nim, go, …	

A finite, discrete “game board”	


Some pieces placed and/or moved on it	

“Perfect information”: no hidden data, no randomness	


Player I/Player II alternate turns	


Defined win/lose configurations (3-in-a-row; checkmate; …)	


Winning strategy: 	


∃move by player 1 ∀moves by II ∃ a move by I ∀… I wins.	


216	




Config:	


  Where are pieces	

  Relevant history	


  Who goes next	

Play:	


  All moves 	


       Game Tree	
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Config:	


  Where are pieces	

  Relevant history	


  Who goes next	

Play:	


  All moves 	


       Game Tree	
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Config:	


  Where are pieces	

  Relevant history	


  Who goes next	

Play:	


  All moves 	


       Winning Strategy	
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Complexity of 2 person, perfect 
information games	


From above, IF	


	
config (incl. history, etc.) is poly size	

	
only poly many successors of one config	


	
each computable in poly time	

	
win/lose configs recognizable in poly time, and	


	
game lasts poly # moves	


THEN	

	
in PSPACE!	


Pf: depth-first search of tree, calc node values as you go.	
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