
Lecture 27	

207	

Beyond NP	

Many complexity classes are worse, e.g. time 22n
, 222n

, …	

Others seem to be “worse” in a different sense, e.g., not in
NP, but still exponential time. E.g., let 	

	

Lp = “assignment y satisfies formula x”, ∈ P	

Then :	

	

SAT = { x | ∃y ⟨x,y⟩∈LP }	

	

UNSAT = { x | ∀y ⟨x,y⟩∉LP }	

	

QBFk = { x | ∃y1∀y2∃y3… k yk ⟨x,y1…yk⟩∈LP }	

	

QBF∞ = { x | ∃y1∀y2∃y3… ⟨x,y1… ⟩∈LP }	

208	

Q	

ΣP2 : { x | ∃y∀z ⟨x,y,z⟩∈LP }

⋮

ΔP0:
P

The “Polynomial Hierarchy”	

ΔP1: P time
given SAT

ΣP1 (NP):
{ x | ∃y ⟨x,y⟩∈LP }
SAT, Clique, VC, HC, Knap,…

ΠP1
 (co-NP):

{ x | ∀y ⟨x,y⟩∈LP }
UNSAT,…

ΠP2
 : { x | ∀y∃z ⟨x,y,z⟩∈LP }

Potential Utility: It is often easy to give such a quantifier-based
characterization of a language; doing so suggests (but doesn’t prove) whether it

is in P, NP, etc. and suggests candidates for reducing to it.

Examples	

QBFk in ΣPk	

Given graph G, integers j & k, is there a set U of ≤ j vertices
in G such that every k-clique contains a vertex in U? 	

Given graph G, integers j & k, is there a set U of ≥ j vertices
in G such removal of any k edges leaves a Hamilton path
in U? 	

210	

Space Complexity	

DTM M has space complexity S(n) if it halts on all inputs, and
never visits more than S(n) tape cells on any input of
length n.	

NTM …on any input of length n on any computation path.	

DSPACE(S(n)) = { L | L acc by some DTM in space O(S(n)) }	

NSPACE(S(n)) = { L | L acc by some NTM in space O(S(n)) }	

211	

Model-independence	

As with Time complexity, model doesn’t matter much. E.g.:	

SPACE(n) on DTM ≈ O(n) bytes on your laptop	

Why? Simulate each by the other.	

212	

Space vs Time	

Time T ⊆ Space T	

	

Pf: no time to use more space	

Space T ⊆ Time 2cT	

	

Pf: if run longer, looping	

213	

Space seems more powerful	

Intuitively, space is reusable, time isn’t	

Ex.: SAT ∈ DSPACE(n)	

	

Pf: try all possible assignments, one after the other	

Even more: ���
QBFk = { ∃y1∀y2∃y3… k yk x | ⟨x,y1…yk⟩∈LP }∈ DSPACE(n) ���
QBF∞ = { ∃y1∀y2∃y3… x | ⟨x,y1… ⟩∈LP } ∈ DSPACE(n)	

214	

Q	

PSPACE = Space(nO(1))	

NP ⊆ PSPACE	

	

pf: depth-first search of NTM computation tree	

215	

Games	

2 player “board” games	

E.g., checkers, chess, tic-tac-toe, nim, go, …	

A finite, discrete “game board”	

Some pieces placed and/or moved on it	

“Perfect information”: no hidden data, no randomness	

Player I/Player II alternate turns	

Defined win/lose configurations (3-in-a-row; checkmate; …)	

Winning strategy: 	

∃move by player 1 ∀moves by II ∃ a move by I ∀… I wins.	

216	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Game Tree	

217	

∃

∀

∃

∀

x	

 x	

x	

x	

o	

 x	

o	

x	

o	

x	

o	

x	

 o	

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Game Tree	

218	

∃

∀

∃

∀

x	

∧ x	

∧ x	

∧

x	

o	

∨

∨

x	

o	

x	

o	

∨ x	

o	

∨ x	

 o	

∨ ∨
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 1	

 1	

 0	

 1	

 0	

 1	

 0	

Win/lose:	

Config:	

 Where are pieces	

 Relevant history	

 Who goes next	

Play:	

 All moves 	

 Winning Strategy	

219	

∃

∀

∃

∀

x	

∧ x	

∧ x	

∧

x	

o	

∨

∨

x	

o	

x	

o	

∨ x	

o	

∨ x	

 o	

∨ ∨
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

1	

 1	

 1	

0	

 1	

 1	

 1	

 0	

 1	

 0	

 0	

 1	

 0	

 0	

 1	

 1	

 1	

 1	

 1	

 0	

Win/lose:	

Complexity of 2 person, perfect
information games	

From above, IF	

	

config (incl. history, etc.) is poly size	

	

only poly many successors of one config	

	

each computable in poly time	

	

win/lose configs recognizable in poly time, and	

	

game lasts poly # moves	

THEN	

	

in PSPACE!	

Pf: depth-first search of tree, calc node values as you go.	

221	

