
Lecture 17
Midterm Review



Midterm Mechanics

Friday

In Class

One page of notes allowed; otherwise closed book.

Covers: 

Sipser, Chapters 3, 4, 5; 

Lectures 1-13; 

Homework to date



Turing Machines

A simple model of “mechanical computation”

Details:
state/config
move left/right/(not stay still, except...)
left end
halt/accept/reject
1 tape / multi-tape
computation histories (accepting/rejecting)



All “reasonable” models are alike in capturing the 
intuitive notion of “mechanically computable”

Unprovable (because it’s loosely defined)

Support:

provable equivalence of various “natural” models

inequivalence of really weird models?

  “Run ∞ steps and then...”

  “Ask the gods whether M halts on w and if not then...”

Church-Turing Thesis



Decidable/Recognizable

Does it halt?

Languages ::  accept/reject  ::  yes/no  ::  0/1

(Turing) Decidable: 

answer and always halt

(Turing) Recognizable

halt and accept, but may reject by looping



Undecidability

Diagonalization 
Cardinality:

Uncountably many languages
Only countably many recognizable languages 
Only countably many decidable languages 

A specific Turing recognizable, but undecidable, language:
ATM = { <M,w> | TM M accepts w }

A specific non-Turing-recognizable language:
ATM 



Decidable = Rec ∩ co-Rec

recognizable

decidable

co-
recognizable

L decidable iff both L 
& Lc are recognizable
Pf: 
(⇐) on any given input, dovetail 
a recognizer for L with one for 
Lc; one or the other must halt 
& accept, so you can halt & 
accept/reject appropriately.

(⇒): 
 decidable languages are closed 
under complement (flip acc/rej)



Reduction

“A is reducible to B” (notation:  A ≤T B) means I could 
solve A if I had a subroutine for B

Key Facts:

A ≤T B & B decidable implies A decidable  (almost the definition)

A ≤T B & A undecidable implies B undecidable (contrapositive)

A ≤T B & B ≤T C implies A ≤T C



Many Undecidable 
Problems

About Turing Machines

HALTTM  EQTM  EMPTYTM  REGULARTM ...

Rice’s Theorem

About programs

Ditto!  And: array-out-of-bounds, unreachability, loop 
termination, assertion-checking, correctness, ...

About Other Things

EMPTYLBA  ALLCFG EQCFG PCP DiophantineEqns ...



Mapping Reducibility

Defn:  A is mapping reducible to B (A ≤m B) if there is 
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T : 
Call subr only once; its answer is the answer 

Theorem:
A ≤m B & B     decidable    (recognizable) ⇒ A is too

A ≤m B & A undecidable (unrecognizable) ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C
Most reductions we’ve seen were actually ≤m reductions.  
(And if not, then A ≤m B is likely.)



Σ2 :  { x | ∃y∀z ⟨x,y,z⟩∈D }
ALLTM, EQTM, ...

⋮

Δ0:
decidable

The “Arithmetical Hierarchy”

Δ1:
decidable
given ATM

Σ1 (Turing recognizable): 
{ x | ∃y ⟨x,y⟩∈D }

ATM, EMPTYTM, ...

Π1 (co-recognizable): 
{ x | ∀y ⟨x,y⟩∈D } 

ATM, EMPTYTM, ...

Π2 :  { x | ∀y∃z ⟨x,y,z⟩∈D }
ALLTM, EQTM, ...

Potential Utility: It is often easy to give such a quantifier-based 
characterization of a language; doing so suggests (but doesn’t prove) whether 

it is decidable, recognizable, etc. and suggests candidates for reducing to it.


