
Lecture 17
Midterm Review

Midterm Mechanics

Friday

In Class

One page of notes allowed; otherwise closed book.

Covers:

Sipser, Chapters 3, 4, 5;

Lectures 1-13;

Homework to date

Turing Machines

A simple model of “mechanical computation”

Details:
state/config
move left/right/(not stay still, except...)
left end
halt/accept/reject
1 tape / multi-tape
computation histories (accepting/rejecting)

All “reasonable” models are alike in capturing the
intuitive notion of “mechanically computable”

Unprovable (because it’s loosely defined)

Support:

provable equivalence of various “natural” models

inequivalence of really weird models?

 “Run ∞ steps and then...”

 “Ask the gods whether M halts on w and if not then...”

Church-Turing Thesis

Decidable/Recognizable

Does it halt?

Languages :: accept/reject :: yes/no :: 0/1

(Turing) Decidable:

answer and always halt

(Turing) Recognizable

halt and accept, but may reject by looping

Undecidability

Diagonalization
Cardinality:

Uncountably many languages
Only countably many recognizable languages
Only countably many decidable languages

A specific Turing recognizable, but undecidable, language:
ATM = { <M,w> | TM M accepts w }

A specific non-Turing-recognizable language:
ATM

Decidable = Rec ∩ co-Rec

recognizable

decidable

co-
recognizable

L decidable iff both L
& Lc are recognizable
Pf:
(⇐) on any given input, dovetail
a recognizer for L with one for
Lc; one or the other must halt
& accept, so you can halt &
accept/reject appropriately.

(⇒):
 decidable languages are closed
under complement (flip acc/rej)

Reduction

“A is reducible to B” (notation: A ≤T B) means I could
solve A if I had a subroutine for B

Key Facts:

A ≤T B & B decidable implies A decidable (almost the definition)

A ≤T B & A undecidable implies B undecidable (contrapositive)

A ≤T B & B ≤T C implies A ≤T C

Many Undecidable
Problems

About Turing Machines

HALTTM EQTM EMPTYTM REGULARTM ...

Rice’s Theorem

About programs

Ditto! And: array-out-of-bounds, unreachability, loop
termination, assertion-checking, correctness, ...

About Other Things

EMPTYLBA ALLCFG EQCFG PCP DiophantineEqns ...

Mapping Reducibility

Defn: A is mapping reducible to B (A ≤m B) if there is
computable function f such that w ∈ A ⇔ f(w) ∈ B

A special case of ≤T :
Call subr only once; its answer is the answer

Theorem:
A ≤m B & B decidable (recognizable) ⇒ A is too

A ≤m B & A undecidable (unrecognizable) ⇒ B is too

A ≤m B & B ≤m C ⇒ A ≤m C
Most reductions we’ve seen were actually ≤m reductions.
(And if not, then A ≤m B is likely.)

Σ2 : { x | ∃y∀z ⟨x,y,z⟩∈D }
ALLTM, EQTM, ...

⋮

Δ0:
decidable

The “Arithmetical Hierarchy”

Δ1:
decidable
given ATM

Σ1 (Turing recognizable):
{ x | ∃y ⟨x,y⟩∈D }

ATM, EMPTYTM, ...

Π1 (co-recognizable):
{ x | ∀y ⟨x,y⟩∈D }

ATM, EMPTYTM, ...

Π2 : { x | ∀y∃z ⟨x,y,z⟩∈D }
ALLTM, EQTM, ...

Potential Utility: It is often easy to give such a quantifier-based
characterization of a language; doing so suggests (but doesn’t prove) whether

it is decidable, recognizable, etc. and suggests candidates for reducing to it.

