Lecture 17 Midterm Review

Midterm Mechanics

Friday

In Class

One page of notes allowed; otherwise closed book.

Covers:

Sipser, Chapters 3, 4, 5;

Lectures I-13;

Homework to date

Turing Machines

A simple model of "mechanical computation"

Details:

state/config

move left/right/(not stay still, except...)

left end

halt/accept/reject

I tape / multi-tape

computation histories (accepting/rejecting)

Church-Turing Thesis

All "reasonable" models are alike in capturing the intuitive notion of "mechanically computable"

Unprovable (because it's loosely defined)

Support:

- provable equivalence of various "natural" models
- inequivalence of really weird models?

"Run ∞ steps and then..."

"Ask the gods whether M halts on w and if not then..."

Decidable/Recognizable

Does it halt?

Languages :: accept/reject :: yes/no :: 0/1

(Turing) Decidable:

answer and *always halt*

(Turing) Recognizable

halt and accept, but may reject by looping

Undecidability

Diagonalization

Cardinality:

Uncountably many languages

Only countably many recognizable languages

Only countably many decidable languages

A specific Turing recognizable, but undecidable, language:

 $A_{TM} = \{ \langle M, w \rangle | TM M accepts w \}$

A specific non-Turing-recognizable language:

ATM

$Decidable = Rec \cap co-Rec$

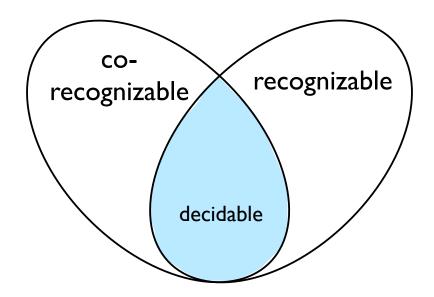
L decidable iff both L & L^c are recognizable

Pf:

(⇐) on any given input, dovetail
a recognizer for L with one for
L^c; one or the other must halt
& accept, so you can halt &
accept/reject appropriately.

(⇒):

decidable languages are closed under complement (flip acc/rej)



Reduction

"A is reducible to B" (notation: $A \leq_T B$) means I could solve A if I had a subroutine for B

Key Facts:

- $A \leq_T B \& B \ decidable \ implies A \ decidable \ (almost the definition)$
- $A \leq_T B \& A$ undecidable implies B undecidable (contrapositive)
- $A \leq_T B \& B \leq_T C$ implies $A \leq_T C$

Many Undecidable Problems

About Turing Machines

- HALTTM EQTM EMPTYTM REGULARTM ...
- **Rice's Theorem**
- About programs
 - Ditto! And: array-out-of-bounds, unreachability, loop termination, assertion-checking, correctness, ...

About Other Things

EMPTYLBA ALLCFG EQCFG PCP DiophantineEqns ...

Mapping Reducibility

Defn: A is *mapping reducible* to B (A \leq_m B) if there is computable function f such that w \in A \Leftrightarrow f(w) \in B

A special case of \leq_T :

Call subr only once; its answer is the answer

Theorem:

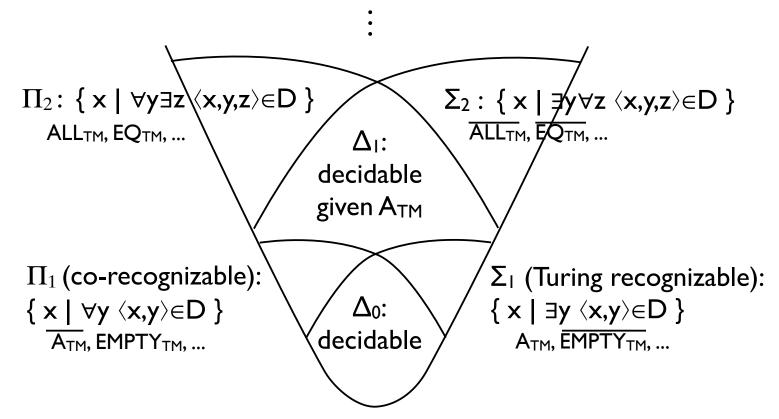
 $A \leq_m B \& B$ decidable (recognizable) $\Rightarrow A$ is too

 $A \leq_m B \& A undecidable (unrecognizable) \Rightarrow B is too$

 $\mathsf{A} \leq_{\mathsf{m}} \mathsf{B} \And \mathsf{B} \leq_{\mathsf{m}} \mathsf{C} \Rightarrow \mathsf{A} \leq_{\mathsf{m}} \mathsf{C}$

Most reductions we've seen were actually \leq_m reductions. (And if not, then $A \leq_m \overline{B}$ is likely.)

The "Arithmetical Hierarchy"



Potential Utility: It is often easy to give such a quantifier-based characterization of a language; doing so suggests (but doesn't prove) whether it is decidable, recognizable, etc. and suggests candidates for reducing to it.