CSE 431:

More NP-completeness

Paul Beame

We already know

- 3SAT \leq_{p} CLIQUE
- CIRCUIT-SAT is NP-complete
- We now show Cook-Levin Theorem that 3SAT is NP-complete

A useful property of polynomial-time reductions

- Theorem: If $\mathbf{A} \leq_{\mathrm{p}} \mathrm{B}$ and $\mathrm{B} \leq_{\mathrm{p}} \mathrm{C}$ then $\mathrm{A} \leq_{\mathrm{p}} \mathrm{C}$
- Proof idea:
- Compose the reduction from \mathbf{A} to \mathbf{B} with the reduction g from B to C to get a new reduction $\mathbf{h}(\mathbf{x})=\mathbf{g}(\mathbf{f}(\mathbf{x}))$ from \mathbf{A} to \mathbf{C}.
- The general case is similar and uses the fact that the composition of two polynomials is also a polynomial

Cook-Levin Theorem Implications

- Theorem (Cook 1971, Levin 1973): 3-SAT is NP-complete
- Corollary: B is NP-hard \Leftrightarrow 3-SAT $\leq_{P} B$
- (or $\mathbf{A} \leq_{p} B$ for any NP-complete problem A)
- Proof:
- If B is NP-hard then every problem in NP polynomial-time reduces to B, in particular 3-SAT does since it is in NP
- For any problem \mathbf{A} in NP, $\mathbf{A} \leq_{p} 3-S A T$ and so if 3-SAT $\leq_{p} B$ we have $A \leq_{p} B$.
- therefore B is NP-hard if 3-SAT $\leq_{p} B$

Reductions by Simple Equivalence

- Show: Clique \leq_{p} Independent-Set
- Clique:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that every pair of vertices in U is joined by an edge?
- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in \mathbf{U} are joined by an edge?

Clique \leq_{p} Independent-Set

- Given (G,k) as input to Independent-Set where $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Transform to ($\mathbf{G}^{\prime}, \mathbf{k}$) where $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathbf{E}^{\prime}\right)$ has the same vertices as G but E^{\prime} consists of precisely those edges that are not edges of \mathbf{G}
- \mathbf{U} is an independent set in \mathbf{G}
$\Leftrightarrow \mathbf{U}$ is a clique in \mathbf{G}^{\prime}

More Reductions

- Show: Independent Set \leq_{p} Vertex-Cover
- Vertex-Cover:
- Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k} is there a subset \mathbf{W} of \mathbf{V} of size at most \mathbf{k} such that every edge of G has at least one endpoint in W ? (i.e. W covers all edges of G)?
- Independent-Set:
- Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k}, is there a subset \mathbf{U} of \mathbf{V} with $|\mathbf{U}| \geq \mathbf{k}$ such that no two vertices in \mathbf{U} are joined by an edge?

Reduction Idea

- Claim: In a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E}), \mathbf{S}$ is an independent set iff V-S is a vertex cover
- Proof:
- \Rightarrow Let S be an independent set in G
- Then S contains at most one endpoint of each edge of G
- At least one endpoint must be in V-S
- V-S is a vertex cover
- \Leftarrow Let $\mathbf{W}=\mathrm{V}$-S be a vertex cover of G
- Then S does not contain both endpoints of any edge (else W would miss that edge)
- S is an independent set

Reduction

- Map (\mathbf{G}, \mathbf{k}) to ($\mathbf{G}, \mathbf{n - k}$)
- Previous lemma proves correctness
- Clearly polynomial time
- We also get that
- Vertex-Cover sp $_{\text {P }}$ Independent Set

Reductions from a Special Case to a General Case

- Show: Vertex-Cover \leq_{p} Set-Cover
- Vertex-Cover:
- Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and an integer \mathbf{k} is there a subset \mathbf{W} of \mathbf{V} of size at most \mathbf{k} such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G)?
- Set-Cover:
- Given a set U of n elements, a collection S_{1}, \ldots, S_{m} of subsets of \mathbf{U}, and an integer \mathbf{k}, does there exist a collection of at most k sets whose union is equal to U?

The Simple Reduction

- Transformation f maps $(\mathbf{G}=(\mathbf{V}, \mathbf{E}), \mathbf{k})$ to $\left(\mathbf{U}, \mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathbf{m}}, \mathbf{k}^{\boldsymbol{\prime}}\right)$
- U $\leftarrow E$
- For each vertex $\mathbf{v} \in \mathbf{V}$ create a set $\mathbf{S}_{\mathbf{v}}$ containing all edges that touch \mathbf{v}
- k'ャk
- Reduction f is clearly polynomial-time to compute
- We need to prove that the resulting algorithm gives the right answer!

Proof of Correctness

- Two directions:
- If the answer to Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES then the answer for Set-Cover on $f(\mathbf{G}, \mathbf{k})$ is YES
- If a set \mathbf{W} of \mathbf{k} vertices covers all edges then the collection $\left\{\mathbf{S}_{\mathbf{v}} \mid \mathbf{v} \in \mathbf{W}\right\}$ of \mathbf{k} sets covers all of U
- If the answer to Set-Cover on $\mathbf{f}(\mathbf{G}, \mathbf{k})$ is YES then the answer for Vertex-Cover on (\mathbf{G}, \mathbf{k}) is YES
- If a subcollection $\mathbf{S}_{\mathrm{v}_{1}}, \ldots, \mathrm{~S}_{\mathrm{v}_{\mathrm{k}}}$ covers all of U then the set $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$ is a vertex cover in \mathbf{G}.

Problems we already know are NPcomplete

- Circuit-SAT
- 3-SAT
- Independent-Set
- Clique
- Vertex-Cover
- Set-Cover

More NP-completeness

- Subset-Sum problem
- Given \mathbf{n} integers $\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathbf{n}}$ and integer \mathbf{t}
- Is there a subset of the \mathbf{n} input integers that adds up to exactly t?

3-SAT \leq_{p} Subset-Sum

- Given a 3-CNF formula with m clauses and \mathbf{n} variables
- Will create $2 m+2 n$ numbers that are $\mathbf{m + n}$ digits long
- Two numbers for each variable x_{i}
- t_{i} and f_{i} (corresponding to x_{i} being true or x_{i} being false)
- Two extra numbers for each clause
- \mathbf{u}_{j} and v_{j} (filler variables to handle number of false literals in clause \mathbf{C}_{j})

3-SAT $\leq_{\text {p }}$ Subset-Sum

	$1234 \ldots \text { n } 1234 \ldots \text { m }$	$C_{3}=\left(x_{1} \vee \neg \mathrm{x}_{2} \vee \mathrm{x}_{5}\right)$
t_{1}	$1000 \ldots 00010 \ldots 1$	
f_{1}	$1000 \ldots 01001 \ldots 0$	
t_{2}	$0100 \ldots 00100 \ldots 1$	
f_{2}	$0100 \ldots 00011 \ldots 0$	
$\mathrm{u}_{1}=\mathrm{v}_{1}$	$0000 \ldots 01000 \ldots 0$	
$\mathrm{u}_{2}=\mathrm{V}_{2}$	$0000 \ldots 00100 \ldots 0$	
	\ldots...	
t	$1111 \ldots 13333 \ldots 3$	

Graph Colorability

- Defn: Given a graph $G=(V, E)$, and an integer k, a k-coloring of G is
- an assignment of up to k different colors to the vertices of G so that the endpoints of each edge have different colors.
- 3-Color: Given a graph $G=(V, E)$, does G have a 3-coloring?
- Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:
- Hint is an assignment of red,green,blue to the vertices of G
- Easy to check that each edge is colored correctly

3-SAT $\leq \mathrm{p}$-Color

- Reduction:
- We want to map a 3-CNF formula F to a graph G so that
- \mathbf{G} is 3 -colorable iff F is satisfiable

3-SAT \leq p 3 -Color

Base Triangle

3 -SAT \leq 3 -Color

Clause Part:
Add one 6 vertex gadget per clause connecting its 'outer vertices' to the literals in the clause

Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph

Any 3-coloring of the graph colors
each gadget triangle using each color

Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget

Any 3 -coloring of the graph has T at the other end of the blue edge connected to the F

Any 3-coloring of the graph yields a satisfying assignment to the formula

Matching Problems

- Perfect Bipartite Matching
- Given a bipartite graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y}$, is there a set \mathbf{M} in E such that every vertex in \mathbf{V} is in precisely one edge of M ?
- In P
- Network Flow gives O(nm) algorithm where $\mathbf{n}=|\mathbf{V}|, \mathbf{m}=|\mathbf{E}|$.

3-Dimensional Matching

- Perfect Bipartite Matching is in \mathbf{P}
- Given a bipartite graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y}$, is there a subset \mathbf{M} in \mathbf{E} such that every vertex in \mathbf{V} is in precisely one edge of \mathbf{M} ?
- 3-Dimensional Matching
- Given a tripartite hypergraph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ where $\mathbf{V}=\mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z}$ and $\mathbf{E} \subseteq \mathbf{X} \times \mathbf{Y} \times \mathbf{Z}$, is there a subset \mathbf{M} in \mathbf{E} such that every vertex in \mathbf{V} is in precisely one hyperedge of M ?
- is in NP: Certificate is the set M

3-Dimensional Matching

- Theorem: 3-Dimensional Matching is NP-complete
- Proof:
- We've already seen that it is in NP
- 3-Dimensional Matching is NP-hard:
- Reduction from 3-SAT
- Given a 3-CNF formula F we create a tripartite hypergraph ("hyperedges" are triangles) G based on F as follows

3-SAT \leq_{p} 3-Dimensional Matching

- Variable part:
- If variable x_{i} occurs r_{i} times in F create r_{i} red and r_{i} green triangles linked in a circle, one pair per occurrence
- Perfect matching M must either use all the green edges leaving red tips uncovered (\mathbf{x}_{i} is assigned false) or all the red edges leaving all green tips uncovered ($\mathbf{x}_{\mathbf{i}}$ is assigned true)

3-SAT $\leq_{p} 3$-Dimensional Matching

- Clause part: Two new nodes per clause joined to each of its literals:

$$
C_{3}=\left(x_{1} \vee \neg x_{2} \vee x_{5}\right)
$$

X_{1}
X_{2}
X_{5}

3-SAT $\leq_{\mathrm{P}} 3$-Dimensional Matching

- Slack: If there are m clauses then there are 3 m variable occurrences. That means 3 m total tips are not covered by whichever of red or green triangles not chosen. Of these, m are covered if each clause is satisfied. Need to cover the remaining 2 m tips.

Solution: Add 2 m pairs of slack vertices

3-SAT $\leq_{p} 3$-Dimensional Matching

- Well-formed: Each triangle has one of each type of node:
- Correctness:
- If F has a satisfying assignment then choose the following triangles which form a perfect 3-dimensional matching in G:
- Either the red or the green triangles in the cycle for $\mathbf{x}_{\mathbf{i}}$ - the opposite of the assignment to \mathbf{x}_{i}
- The triangle containing the first true literal for each clause and the two clause nodes
- 2 m slack triangles one per new pair of nodes to cover all the remaining tips

3-SAT $\leq_{p} 3$-Dimensional Matching

- Correctness continued:
- If G has a perfect 3-dimensional matching then:
- Each blue node in the cycle for each x_{i} is contained in exactly two triangles, exactly one of which much be in M. If one triangle in the cycle is in M, the others must be the same color. We use the color not used to define the truth assignment to $\mathbf{x}_{\mathbf{i}}$
- The two nodes for any clause must be contained in an edge which must also contain a third node that corresponds to a literal made true by the truth assignment. Therefore the truth assignment satisfies F so it is satisfiable.

