CSE 431 Spring 2012
 Assignment \#3

Due: Friday, April 20, 2012
Reading assignment: Read Chapter 5 of Sipser's text. We will cover section 5.3 before we cover computation histories in section 5.1.

Problems:

1. Show that the set of complex numbers,
$Q U A D R A T I C-R O O T=\left\{x \in \mathbb{C} \mid\right.$ there are integers $a \neq 0, b$, and c such that $\left.a x^{2}+b x+c=0\right\}$
is countable.
2. Suppose that $A \subseteq\{\langle M\rangle \mid M$ is a decider TM $\}$ and that A is Turing-recognizable. (That is, A only contains descriptions of TMs that are deciders but it might not accept all such descriptions.)
Prove that there is a decidable language D such that $L(M) \neq D$ for any M with $\langle M\rangle \in A$. (Intuitively, this means that one couldn't come up with some restricted easy-to-recognize format for deciders that captured all decidable languages.)
(Hint: You may find it helpful to consider an enumerator for A.)
3. Let $T=\left\{\langle M\rangle \mid M\right.$ is a TM that accepts w^{R} whenever it accepts $\left.w\right\}$. Show that T is undecidable.
4. Sipser's text (either edition), Problem 5.13.
5. Sipser's text (1st edition problem 5.10; 2nd edition problem 5.24.
6. (Bonus) Let $\Gamma=\{0,1$, blank $\}$ be the tape alphabet for all TMs in this problem. Define the busy beaver function $B B: \mathbb{N} \rightarrow \mathbb{N}$ as follows: For each value of k, consider all k-state TMs that halt when started with a blank tape. Let $B B(k)$ be the maximum number of 1 s that remain on the tape among all of these machines. Show that $B B$ is not a computable function.
