
CSE 431 Theory of Computation
Scribes: Scott Daley and Daniel Noteboom
Lecture 10 May 1

P vs NP

P = ⋃ 𝑇𝑖𝑚𝑒(𝑛𝑘)𝑘≥1 (the set of problems solvable in time ≤ 𝑐𝑛𝑘 for some fixed c,k)

NP = ⋃ 𝑁𝑇𝑖𝑚𝑒(𝑛𝑘)𝑘≥1 (same as above but in non-deterministic time)

 It seems as if a non-deterministic machine is more powerful than a deterministic

machine, but no-one knows.

Algorithms:

Language: PATH = {< 𝐺, 𝑠, 𝑡 >: G is a directed graph and s,t are two nodes where there is a

path from s->t

We can’t just use bruteforce

search to solve this problem

because this would be time

mm(where m is the number of

edges). We have to be a little

smarter.

Theorem: 𝑷𝑨𝑻𝑯 ∈ 𝑷

1. Mark s O(1)

2. While there are more newly marked nodes O(n)

For every edge (u,v) in G O(n2)

 If u is marked and v is unmarked, then mark v O(1)

3. Accept if t is marked O(1)

At worst, the running time is O(n3). It’s true that this running time is slower than it needs to be,

and this algorithm is not the best algorithm to solve this problem (Breadth first search would

solve the problem in O(m +n) time). However, for our purpose, all we wanted to do was prove

that PATH was decidable in polynomial time and we accomplished this task.

S

T

c

c

c

c

c

c

c

Problem: Bipartite Matching

A Bipartite Graph G = (V,E) is a graph in which the vertex set V can be divided into two disjoint

subsets X and Y such that every edge 𝑒 ∈ 𝐸 has one end point in X and the other end point in Y.

A matching M is a subset of edges such that each node in V appears in at most one edge in M.1

A maximum matching is a matching with the largest possible number of edges. The solution is

to add two nodes, s and t to the graph where s points to all the nodes in X and t is pointed to by

all the nodes in y. Each edge has a capacity of 1. Finding the maximum flow will also find the

maximum matching.

 Determining that converting the graph into a flow network where finding the maximum

flow produces the correct answer in polynomial time is non-trivial. The point is that the

first problem was easy, and this problem is harder. We might suspect that a problem is

hard, but it might not be hard.

Problem: Hamiltonian Path-A directed graph that goes through each node exactly once.

Language: HAMPATH = {〈𝐺, 𝑠, 𝑡〉: G is a directed graph with a Hamiltonian path from s to

to t}.

c

c

c

c

c

c

c

c

c

c

S T

c

S

 T

T

c

c

c

c

c

 No known polynomial time algorithm exists for Hamiltonian path

 We need to have some way of talking about whether a problem is hard or easy. (even if

we don’t know the truth yet)

 There exists many unsolved problems that would revolutionize their respective fields if a

solution was found. Are these problems related?

Language: COMPOSITES = {〈𝑛〉: n is not prime}

Solution: Check for i = 1,2,3, … √𝑛. Does i divide n evenly? If the answer is yes to any i

then n is not prime. Running time is O(√𝑛(log n)3)

o Input size ≈ log n

o √𝑛 part is slow, so this algorithm does not run in polynomial time

In both HAMPATH and COMPOSITES, it is very hard to find an efficient algorithm but the

solutions can be checked very efficiently. In some problems the solutions cannot be checked

efficiently.

Problem: 𝐻𝐴𝑀𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅: {〈𝐺, 𝑠, 𝑡〉: G is a directed graph with no Hamiltonian path from s to to t}.

Problem:𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ { 〈𝑥〉 𝑥 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒}

 It turns out there are efficient verifiers for 𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ but there are no

known efficient verifiers for 𝐻𝐴𝑀𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ .

A formal way to talk about efficient verifiers is as follows

Definition: For a language L an algorithm V is a polynomial-time verifier for L if

𝐿 = {𝑤: 𝑉 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 〈𝑤, 𝑐〉 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠𝑡𝑟𝑖𝑛𝑔 𝑐 𝑎𝑛𝑑 𝑣 𝑟𝑢𝑛𝑠 𝑖𝑛

 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑤, 𝑖. 𝑒. 𝑉 𝑟𝑢𝑛𝑠 𝑖𝑛 𝑡𝑖𝑚𝑒 𝑂(|𝑤|𝑐)

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐

Theorem: 𝐻𝐴𝑀𝑃𝐴𝑇𝐻 has a polynomial time verifier (and thus is in 𝑁𝑃 as we will see).

Proof idea: The description of the Hamiltonian is the certificate.

Proof: The following is a verifier 𝑉 for 𝐻𝐴𝑀𝑃𝐴𝑇𝐻.

𝑉 = “On input 〈〈𝐺, 𝑠, 𝑡〉, 𝑐〉:

1. Check that 𝑐 describes a Hamiltonian path from 𝑠 to 𝑡 in 𝐺.

For example:

𝑐 = (9,7,13,4,1,8,6,5,2,11,10,12)

Are 𝑠 and 𝑡 in 𝐺?

Does 𝑠 = 9 and 𝑡 = 12?

Do all nodes in 𝐺 appear exactly once?

Is each pair of adjacent numbers an edge in 𝐺?

2. If all are true, 𝑎𝑐𝑐𝑒𝑝𝑡.

3. Otherwise, 𝑟𝑒𝑗𝑒𝑐𝑡.”

〈𝐺, 𝑠, 𝑡〉 ∈ 𝐻𝐴𝑀𝑃𝐴𝑇𝐻 ↔ ∃𝑐 such that 𝑉 accepts 〈〈𝐺, 𝑠, 𝑡〉, 𝑐〉

Example: 𝐶𝐿𝐼𝑄𝑈𝐸 = {〈𝐺, 𝑘〉: 𝐺 is a graph that has a clique of size k}

Clique: all noes in a clique have an edge to one another.

Theorem: 𝐶𝐿𝐼𝑄𝑈𝐸 has a polynomial time verifier (and thus is in 𝑁𝑃 as we will see).

Proof idea: The list of nodes in the clique is the certificate.

Proof: The following is a verifier 𝑉 for 𝐶𝐿𝐼𝑄𝑈𝐸.

𝑉 = “On input 〈〈𝐺, 𝑘〉, 𝑐〉:

𝑂(𝑛2)

1. Check that 𝑐 has 𝑘 nodes.

2. Check that ∀ 𝑢, 𝑣 in 𝑐 that there is an edge {𝑢, 𝑣} in 𝐺.

3. If both are true, 𝑎𝑐𝑐𝑒𝑝𝑡.

4. Otherwise, 𝑟𝑒𝑗𝑒𝑐𝑡.

〈𝐺, 𝑘〉 ∈ 𝐶𝐿𝐼𝑄𝑈𝐸 ↔ ∃𝑐 such that 𝑉 accepts 〈〈𝐺, 𝑘〉, 𝑐〉

Theorem: 𝑁𝑃 is exactly the class of polynomially verifiable languages.

Proof: 𝐿 with polynomial time verifier → 𝐿 ∈ 𝑁𝑃.

Suppose 𝐿 has a polynomial time verifier 𝑉.

 𝐿 = {𝑤: 𝑉 accepts 〈𝑤, 𝑐〉 for some 𝑐}

𝑉 runs in polynomial time in |𝑤|. Assume certificate has |𝑐| ≤ |𝑤|𝑘 for some 𝑘.

Guess first bit of 𝑐, then next bit of 𝑐, and so on. The non-deterministic tree that does this has

height |𝑤|𝑘. For all certificates 𝑐 of length 1 to |𝑤|𝑘, run 𝑉 on 〈𝑤, 𝑐〉.

c

c

c

c

c

𝑐1

…

c

c

c

c

c

𝑐2
c

c

c

c

c

𝑐3
c

c

c

c

c

𝑐4
c

c

c

c

c

𝑐𝑚

…

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

…
𝑎𝑐𝑐𝑒𝑝𝑡

Run 𝑉 on 〈𝑤, 𝑐〉

Guess 𝑐

≤ |𝑤|𝑘

|𝑤|𝑘

Because this non-deterministic Turing machine can decide 𝐿 in polynomial time, then 𝐿 ∈

𝑁𝑇𝐼𝑀𝐸(𝑛𝑘) for some k and 𝐿 ∈ 𝑁𝑃.

Proof: 𝐿 ∈ 𝑁𝑃 → 𝐿 has polynomial time verifier.

Now suppose that 𝐿 ∈ 𝑁𝑃. Then 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸(𝑛𝑘) for some k. Then there is some non-

deterministic Turing machine 𝑁 with height 𝑛𝑘 that decides 𝐿.

𝑉(〈𝑤, 𝑐〉) = “On input 〈𝑤, 𝑐〉:

1. Simulate 𝑁 on 𝑤 with choices given by c. (deterministic)

2. If 𝑁 accepts 𝑤, 𝑎𝑐𝑐𝑒𝑝𝑡.”

The deterministic Turing machine 𝑉 decides 𝐿 in polynomial time.

Reference Site:

1. http://pages.cs.wisc.edu/~shuchi/courses/787-F09/scribe-notes/lec5.pdf

c

c

c

c

c

…

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

…
𝑎𝑐𝑐𝑒𝑝𝑡

𝑉 on 〈𝑤, 𝑐〉

