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NP-completeness

11.1 P and NP

Review: definition

• P =
⋃
k≥1

TIME(nk);

• NP =
⋃
k≥1

NTIME(nk)

• NP → languages whose YES instance can be verified in (deterministic) polynomial time.

Following are some examples of problem in NP

Theorem 11.1 SUBSET-SUM ∈ NP

Proof:

SUBSET-SUM = {< S, t >: S = {x1, x2, x3, . . . xk} where ∃N ⊆ S, N = {n1, n2, n3, . . . , nj} such that∑
ni = t}

(Example: S = {1, 17, 4, 8, 3, 9}, t = 22, then < S, t > is a Y ES instance of SUBSET-SUM.)

Certificate: Given a set of elements in S {y1, y2, . . . yj} such that
∑
yi = t

Verifier : Check each yi is from S
Check no duplicates
Check

∑
yi = t

⇒ SUBSET-SUM is in NP.

Theorem 11.2 L ∈ P → L ∈ NP

Proof: Suppose L ∈ P
Certificate: −
Verifier: Run the poly time decider for L
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Theorem 11.3 SAT ∈ NP

Proof:

SAT ={< φ >: φ is satisfiable boolean formula}

First define satisfiable boolean formula:

Boolean Formula: A formula with variables x1, x2, . . . , xn and their negation x̄i, ∨ and ∧
(For example: φ = (x1 ∨ x̄2) ∧ (x3 ∨ x4) ∧ (x2 ∧ x̄1))

A boolean formula is satisfiable: if ∃ assignments that makes φ true (evaluate to be 1).
(Taking the formula from obove, assign x1, x2, x3, x4 = 1, φ→ 1, so φ ∈ SAT)

Certificate: Assignment to the variables
Verifier: Check if the assignment satisfies the formula.
⇒ SAT ∈ NP

Theorem 11.4 3SAT ∈ NP

Proof:

3SAT = {< φ >: φ is a 3CNF that’s satisfiable}

3CNF:
Definition: φ = C1 ∧ C2 ∧ C3 · · · ∧ CN where Ci = xi ∨ yi ∨ zi. (xi, yi and zi are literals(→ xi and x̄i))
(Example of 3CNF: (x2 ∨ x1 ∨ x̄4) ∧ (x2 ∨ x1 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x3))

From the fact that SAT ∈ NP ,
⇒ 3SAT ∈ NP

11.2 Reduction

Definition 11.5 computable
a function f : Σ∗ → Σ∗ is computable if there is a poly-time TM on input w write f(w) on the tape then
HALTS.

Definition 11.6 reduciable
a language A is poly time reducible to language B if ∃ poly time computable function f : Σ∗ → Σ∗ such that
∀w ∈ Σ∗, w ∈ A ⇐⇒ f(w) ∈ B
Denoted by A ≤P B

Lemma 11.7 If A ≤P B and B has a poly-time algorithm then A has a poly-time algorithm

Proof: For any input w, to show w
?
∈ A
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1. use A ≤P B, map w to f(w) ∈ B;

2. from the fact that B ∈ P , use the ploy time algorithm to compute f(w)
?
∈ B and use the result;

Then A has a poly-time algorithm.

Theorem 11.8 3SAT ≤P CLIQUE

Proof:

Reminder:

CLIQUE = {< G, k >: if G has a clique of size k}

TO show that 3SAT ≤P CLIQUE,we want to show φ ⇐⇒
poly

f(φ) φ ⇐⇒
poly

f(φ) where f(φ) is some instance

< G, k > φ = C1 ∧ C2 · · · ∧ Cm where Ci = xi ∨ yi ∨ zi

φ→ f(φ):
Map φ to f(φ) by add all possible edges excepts the ones between xi and x̄i
Suppose φ is satisfiable, then each Cj has at lease 1 true literal. Pick one true literal xi from Ci.
For all j 6= i, there must be a xj from Cj that’s true and since xi and x̄i can not both be true, xi 6= x̄i. So
for each xi where i ∈ [1 . . .m], there’s a path between xi and xj .
Thus we obtain a clique
Example:
P Let φ = (x1 ∨ x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x1) ∧ (x4 ∨ x3 ∨ x1)
Assign x2, x3, x4 = 1, the map will look like
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f(φ)→ φ:
Suppose G has a k clique.
To obtain φ, must choose one node for each Cj .
Decode each node to get a partial assignment then fill in the rest of the assignment arbitrarily.
Since there is no edge between xi and x̄i, they must not be in the clique together, thus there’s no inconsis-
tency.
⇒ φ is satisfied.

11.3 COOK-LEVIN THEOREM

Definition 11.9 NP-complete
A language A is NP-complete if:

1. A ∈ NP ;
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2. ∀ problem B ∈ NP , B ≤P A

Theorem 11.10 Cook-Levin Thm
P = NP ⇐⇒ SAT ∈ P

Fact If A is NP-complete and A ∈ P , then P = NP
Suppose A ∈ P , A is NP-complete, then ∀B ∈ NP , B ≤P A, thus B ∈ P then we have P = NP

Theorem 11.11 If NP 6= P , ∃L such that L ∈ NP ∧ L /∈ NP -complete

Theorem 11.12 Cook-Levin Thm (restate)
SAT is NP-complete

We will prove this theorem next time.


