CSE 431 Theory of Computation Spring 2014

Lecture 11:
Lecturer: James R. Lee Scribe: Yueqi Sheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

NP-completeness

11.1 P and NP

Review: definition

e P= |J TIME(n");
k>1

e NP= |J NTIME(nF)
E>1

e NP — languages whose YES instance can be verified in (deterministic) polynomial time.
Following are some examples of problem in NP

Theorem 11.1 SUBSET-SUM € NP

Proof:

SUBSET-SUM = {< S,t >: S = {x1, 22, 23,... 21} where AN C S, N = {ny,n2,ns,...,n;} such that
>_mni =t}

(Example: S = {1,17,4,8,3,9}, t = 22, then < S,¢ > is a Y ES instance of SUBSET-SUM.)

Certificate: Given a set of elements in S {y1,y2,...y;} such that >y, =t
Verifier : Check each y; is from S

Check no duplicates

Check Y y; =1

= SUBSET-SUM is in NP. [|
Theorem 11.2 Le P> L e NP

Proof: Suppose L € P
Certificate: —
Verifier: Run the poly time decider for L [|

11-1

11-2 Lecture 11:

Theorem 11.3 SAT € NP
Proof:

SAT ={< ¢ >: ¢ is satisfiable boolean formula}
First define satisfiable boolean formula:

Boolean Formula: A formula with variables xy, xs, ..., x, and their negation Z;, V and A
(For example: ¢ = (21 V Z2) A (x3V 24) A (22 A T7))
A boolean formula is satisfiable: if 3 assignments that makes ¢ true (evaluate to be 1).
(Taking the formula from obove, assign 1, z2, 3,24 = 1, ¢ = 1, so ¢ € SAT)

Certificate: Assignment to the variables
Verifier: Check if the assignment satisfies the formula.
= SAT e NP [|

Theorem 11.4 35AT € NP
Proof:

3SAT = {< ¢ >: ¢ is a 3CNF that’s satisfiable}

3CNF:
Definition: ¢ = Cy ACs AC3--- ACn where C; = x; V y; V 2. (4, y; and z; are literals(— x; and ;))
(Example of 3CNF: (xo Vo1 V @y) A (x2 Vo1 V a3) A (1 V 52 V 23))

From the fact that SAT € NP,
= 3SAT e NP []

11.2 Reduction

Definition 11.5 computable
a function f : ¥* — X* is computable if there is a poly-time TM on input w write f(w) on the tape then
HALTS.

Definition 11.6 reduciable

a language A is poly time reducible to language B if 3 poly time computable function f : X* — ¥* such that
YweX*, we A < f(w)eB

Denoted by A <p B

Lemma 11.7 If A <p B and B has a poly-time algorithm then A has a poly-time algorithm

?
Proof: For any input w, to show w € A

Lecture 11: 11-3

1. use A <p B, map w to f(w) € B;
?
2. from the fact that B € P, use the ploy time algorithm to compute f(w) € B and use the result;

Then A has a poly-time algorithm. []
Theorem 11.8 3SAT <p CLIQUE

Proof:

Reminder:
CLIQUE = {< G,k >: if G has a clique of size k}

TO show that 3SAT <p CLIQUE,we want to show ¢ <:l> f(o) ¢ <:l> f(¢) where f(¢) is some instance
poly poly
<G k>¢=C,NCy---NC,, where C; = x; Vy; V z;

¢ — f(o):

Map ¢ to f(¢) by add all possible edges excepts the ones between z; and &;

Suppose ¢ is satisfiable, then each C; has at lease 1 true literal. Pick one true literal z; from C;.

For all j # ¢, there must be a x; from C; that’s true and since x; and #; can not both be true, z; # ;. So
for each x; where i € [1...m)], there’s a path between z; and x;.

Thus we obtain a clique

Example:

P Let ¢ = (1‘1 VZE2V1'4) /\(1’_2\/933\/131)/\ ($4\/$3\/{E1)

Assign x5, x3, 24 = 1, the map will look like

[l 2 _
Ty To

s % -
71 YA o

T4 €3 T

1(8) =+ ¢

Suppose G has a k clique.

To obtain ¢, must choose one node for each Cj.

Decode each node to get a partial assignment then fill in the rest of the assignment arbitrarily.

Since there is no edge between z; and z;, they must not be in the clique together, thus there’s no inconsis-
tency.

= ¢ is satisfied. [|

11.3 COOK-LEVIN THEOREM

Definition 11.9 NP-complete
A language A is NP-complete if:

1. Ae NP;

11-4 Lecture 11:

2. ¥ problem Be NP, B<p A

Theorem 11.10 Cook-Levin Thm
P =NP < SAT e P

Fact If A is NP-complete and A € P, then P = NP
Suppose A € P, A is NP-complete, then VB € NP, B <p A, thus B € P then we have P = NP

Theorem 11.11 If NP # P, 3L such that L € NP AN L ¢ NP-complete

Theorem 11.12 Cook-Levin Thm (restate)
SAT is NP-complete

We will prove this theorem next time.

