Lecture 11:

Lecturer: James R. Lee
Scribe: Yueqi Sheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

NP-completeness

11.1 P and NP

Review: definition

- $P=\bigcup_{k \geq 1} \operatorname{TIME}\left(n^{k}\right) ;$
- $N P=\bigcup_{k \geq 1} \operatorname{NTIME}\left(n^{k}\right)$
- $N P \rightarrow$ languages whose YES instance can be verified in (deterministic) polynomial time.

Following are some examples of problem in $N P$

Theorem 11.1 SUBSET-SUM $\in N P$

Proof:

$$
\begin{gathered}
\text { SUBSET-SUM }=\{<S, t\rangle: S=\left\{x_{1}, x_{2}, x_{3}, \ldots x_{k}\right\} \text { where } \exists N \subseteq S, N=\left\{n_{1}, n_{2}, n_{3}, \ldots, n_{j}\right\} \text { such that } \\
\left.\sum n_{i}=t\right\}
\end{gathered}
$$

(Example: $S=\{1,17,4,8,3,9\}, t=22$, then $\langle S, t\rangle$ is a $Y E S$ instance of SUBSET-SUM.)
Certificate: Given a set of elements in $S\left\{y_{1}, y_{2}, \ldots y_{j}\right\}$ such that $\sum y_{i}=t$
Verifier : Check each y_{i} is from S
Check no duplicates
Check $\sum y_{i}=t$
\Rightarrow SUBSET-SUM is in NP.
Theorem 11.2 $L \in P \rightarrow L \in N P$
Proof: Suppose $L \in P$
Certificate: -
Verifier: Run the poly time decider for L

Theorem 11.3 $S A T \in N P$

Proof:

$$
\text { SAT }=\{\langle\phi\rangle: \phi \text { is satisfiable boolean formula }\}
$$

First define satisfiable boolean formula:

Boolean Formula: A formula with variables $x_{1}, x_{2}, \ldots, x_{n}$ and their negation \bar{x}, \vee and \wedge
(For example: $\left.\phi=\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{3} \vee x_{4}\right) \wedge\left(x_{2} \wedge \overline{x_{1}}\right)\right)$
A boolean formula is satisfiable: if \exists assignments that makes ϕ true (evaluate to be 1).
$\overline{\text { (Taking the formula from obove, assign } x_{1}, x_{2}, x_{3}, x_{4}=1, \phi \rightarrow 1 \text {, so } \phi \in \mathrm{SAT} \text {) }{ }^{\text {(Ta }} \text {, }}$

Certificate: Assignment to the variables
Verifier: Check if the assignment satisfies the formula.
\Rightarrow SAT $\in N P$

Theorem 11.4 3SAT $\in N P$

Proof:

$$
3 \mathrm{SAT}=\{<\phi>: \phi \text { is a 3CNF that's satisfiable }\}
$$

3CNF:
Definition: $\phi=C_{1} \wedge C_{2} \wedge C_{3} \cdots \wedge C_{N}$ where $C_{i}=x_{i} \vee y_{i} \vee z_{i}$. $\left(x_{i}, y_{i}\right.$ and z_{i} are literals $\left(\rightarrow x_{i}\right.$ and $\left.\left.\overline{x_{i}}\right)\right)$
(Example of 3CNF: $\left.\left(x_{2} \vee x_{1} \vee \overline{x_{4}}\right) \wedge\left(x_{2} \vee x_{1} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right)\right)$

From the fact that $\mathrm{SAT} \in N P$,
$\Rightarrow 3 \mathrm{SAT} \in N P$

11.2 Reduction

Definition 11.5 computable
a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable if there is a poly-time TM on input w write $f(w)$ on the tape then HALTS.

Definition 11.6 reduciable

a language A is poly time reducible to language B if \exists poly time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $\forall w \in \Sigma^{*}, w \in A \Longleftrightarrow f(w) \in B$
Denoted by $A \leq{ }_{P} B$

Lemma 11.7 If $A \leq_{P} B$ and B has a poly-time algorithm then A has a poly-time algorithm

Proof: For any input w, to show $w \stackrel{?}{\in} A$

1. use $A \leq_{P} B$, map w to $f(w) \in B$;
2. from the fact that $B \in P$, use the ploy time algorithm to compute $f(w) \stackrel{?}{\in} B$ and use the result;

Then A has a poly-time algorithm.

Theorem 11.8 $3 S A T \leq_{P} C L I Q U E$

Proof:

Reminder:

$$
\mathrm{CLIQUE}=\{<G, k>: \text { if } \mathrm{G} \text { has a clique of size } \mathrm{k}\}
$$

TO show that 3 SAT \leq_{P} CLIQUE, we want to show $\phi \underset{\text { poly }}{\Longleftrightarrow} f(\phi) \phi \underset{\text { poly }}{\Longleftrightarrow} f(\phi)$ where $f(\phi)$ is some instance $<G, k>\phi=C_{1} \wedge C_{2} \cdots \wedge C_{m}$ where $C_{i}=x_{i} \vee y_{i} \vee z_{i}$
$\phi \rightarrow f(\phi):$
Map ϕ to $f(\phi)$ by add all possible edges excepts the ones between x_{i} and $\overline{x_{i}}$
Suppose ϕ is satisfiable, then each C_{j} has at lease 1 true literal. Pick one true literal x_{i} from C_{i}.
For all $j \neq i$, there must be a x_{j} from C_{j} that's true and since x_{i} and \bar{x}_{i} can not both be true, $x_{i} \neq \bar{x}_{i}$. So for each x_{i} where $i \in[1 \ldots m]$, there's a path between x_{i} and x_{j}.
Thus we obtain a clique
Example:
P Let $\phi=\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{1}\right) \wedge\left(x_{4} \vee x_{3} \vee x_{1}\right)$
Assign $x_{2}, x_{3}, x_{4}=1$, the map will look like

$f(\phi) \rightarrow \phi:$
Suppose G has a k clique.
To obtain ϕ, must choose one node for each C_{j}.
Decode each node to get a partial assignment then fill in the rest of the assignment arbitrarily.
Since there is no edge between x_{i} and \bar{x}, they must not be in the clique together, thus there's no inconsistency.
$\Rightarrow \phi$ is satisfied.

11.3 COOK-LEVIN THEOREM

Definition 11.9 NP-complete
A language A is $N P$-complete if:

1. $A \in N P$;
2. \forall problem $B \in N P, B \leq_{P} A$

Theorem 11.10 Cook-Levin Thm

$P=N P \Longleftrightarrow S A T \in P$

Fact If A is NP-complete and $A \in P$, then $P=N P$
Suppose $A \in P, A$ is NP-complete, then $\forall B \in N P, B \leq_{P} A$, thus $B \in P$ then we have $P=N P$

Theorem 11.11 If $N P \neq P, \exists L$ such that $L \in N P \wedge L \notin N P$-complete

Theorem 11.12 Cook-Levin Thm (restate) SAT is NP-complete

We will prove this theorem next time.

