CSE 431 Theory of Computation		Spring 2014
	Lecture 11:	
Lecturer: James R. Lee		Scribe: Yueqi Sheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

NP-completeness

11.1 P and NP

Review: definition

- $P = \bigcup_{k \ge 1} TIME(n^k);$
- $NP = \bigcup_{k \ge 1} NTIME(n^k)$
- $NP \rightarrow$ languages whose YES instance can be verified in (deterministic) polynomial time.

Following are some examples of problem in NP

Theorem 11.1 $SUBSET-SUM \in NP$

Proof:

SUBSET-SUM = {
$$\langle S, t \rangle$$
: $S = \{x_1, x_2, x_3, \dots x_k\}$ where $\exists N \subseteq S, N = \{n_1, n_2, n_3, \dots, n_j\}$ such that $\sum n_i = t\}$

(Example: $S = \{1, 17, 4, 8, 3, 9\}, t = 22$, then $\langle S, t \rangle$ is a YES instance of SUBSET-SUM.)

Certificate: Given a set of elements in $S \{y_1, y_2, \dots y_j\}$ such that $\sum y_i = t$ Verifier : Check each y_i is from SCheck no duplicates Check $\sum y_i = t$

 \Rightarrow SUBSET-SUM is in NP.

Theorem 11.2 $L \in P \rightarrow L \in NP$

Proof: Suppose $L \in P$ Certificate: – Verifier: Run the poly time decider for L

Theorem 11.3 $SAT \in NP$

Proof:

SAT = { $< \phi >: \phi$ is satisfiable boolean formula }

First define satisfiable boolean formula:

Boolean Formula: A formula with variables x_1, x_2, \ldots, x_n and their negation $\bar{x_i}, \lor$ and \land (For example: $\phi = (x_1 \lor \bar{x_2}) \land (x_3 \lor x_4) \land (x_2 \land \bar{x_1})$) A boolean formula is <u>satisfiable</u>: if \exists assignments that makes ϕ true (evaluate to be 1). (Taking the formula from obove, assign $x_1, x_2, x_3, x_4 = 1, \phi \rightarrow 1$, so $\phi \in SAT$)

Certificate: Assignment to the variables Verifier: Check if the assignment satisfies the formula. \Rightarrow SAT $\in NP$

Theorem 11.4 $3SAT \in NP$

Proof:

 $3SAT = \{ \langle \phi \rangle : \phi \text{ is a 3CNF that's satisfiable} \}$

<u>3CNF</u>:

Definition: $\phi = C_1 \wedge C_2 \wedge C_3 \cdots \wedge C_N$ where $C_i = x_i \vee y_i \vee z_i$. $(x_i, y_i \text{ and } z_i \text{ are literals}(\rightarrow x_i \text{ and } \bar{x_i}))$ (Example of 3CNF: $(x_2 \vee x_1 \vee \bar{x_4}) \wedge (x_2 \vee x_1 \vee \bar{x_3}) \wedge (x_1 \vee \bar{x_2} \vee x_3))$)

From the fact that SAT $\in NP$, $\Rightarrow 3SAT \in NP$

11.2 Reduction

Definition 11.5 computable

a function $f: \Sigma^* \to \Sigma^*$ is computable if there is a poly-time TM on input w write f(w) on the tape then HALTS.

Definition 11.6 reduciable

a language A is poly time reducible to language B if \exists poly time computable function $f: \Sigma^* \to \Sigma^*$ such that $\forall w \in \Sigma^*, w \in A \iff f(w) \in B$ Denoted by $A \leq_P B$

Lemma 11.7 If $A \leq_P B$ and B has a poly-time algorithm then A has a poly-time algorithm

Proof: For any input w, to show $w \in A$

1. use $A \leq_P B$, map w to $f(w) \in B$;

2. from the fact that $B \in P$, use the ploy time algorithm to compute $f(w) \stackrel{?}{\in} B$ and use the result;

Then A has a poly-time algorithm.

Theorem 11.8 $3SAT \leq_P CLIQUE$

Proof:

Reminder:

$$CLIQUE = \{ \langle G, k \rangle : if G has a clique of size k \}$$

TO show that $3\text{SAT} \leq_P \text{CLIQUE, we want to show } \phi \iff_{poly} f(\phi) \phi \iff_{poly} f(\phi)$ where $f(\phi)$ is some instance $\langle G, k \rangle \phi = C_1 \wedge C_2 \cdots \wedge C_m$ where $C_i = x_i \vee y_i \vee z_i$

 $\phi \to f(\phi)$:

Map ϕ to $f(\phi)$ by add all possible edges excepts the ones between x_i and \bar{x}_i

Suppose ϕ is satisfiable, then each C_i has at lease 1 true literal. Pick one true literal x_i from C_i .

For all $j \neq i$, there must be a x_j from C_j that's true and since x_i and \bar{x}_i can not both be true, $x_i \neq \bar{x}_i$. So for each x_i where $i \in [1 \dots m]$, there's a path between x_i and x_j .

Thus we obtain a clique

Example:

P Let $\phi = (x_1 \lor x_2 \lor x_4) \land (\bar{x_2} \lor x_3 \lor x_1) \land (x_4 \lor x_3 \lor x_1)$ Assign $x_2, x_3, x_4 = 1$, the map will look like

 $f(\phi) \to \phi$:

Suppose G has a k clique.

To obtain ϕ , must choose one node for each C_j .

Decode each node to get a partial assignment then fill in the rest of the assignment arbitrarily.

Since there is no edge between x_i and \bar{x}_i , they must not be in the clique together, thus there's no inconsistency.

 $\Rightarrow \phi$ is satisfied.

11.3 COOK-LEVIN THEOREM

Definition 11.9 NP-complete

A language A is NP-complete if:

1.
$$A \in NP;$$

2. \forall problem $B \in NP$, $B \leq_P A$

Theorem 11.10 Cook-Levin Thm $P = NP \iff SAT \in P$

Fact If A is NP-complete and $A \in P$, then P = NPSuppose $A \in P$, A is NP-complete, then $\forall B \in NP$, $B \leq_P A$, thus $B \in P$ then we have P = NP

Theorem 11.11 If $NP \neq P$, $\exists L$ such that $L \in NP \land L \notin NP$ -complete

Theorem 11.12 Cook-Levin Thm (restate) SAT is NP-complete

We will prove this theorem next time.