CSE 431 - Theory of Computation

Lecture 14: May 15, 2014
Lecturer: James Lee
Scribe: Yi Wang

Graph Coloring

Input: An undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and a number K
Output: Decide whether G has a K-coloring (No edge between same color nodes)

Example:

3 COL: $\{<\mathrm{G}\rangle$: G has a proper 3-Coloring \}
Planar Graph: Graph that can be drawn in the Euclidean Plane without edge crossings

Facts

- \quad 1-Coloring \Leftrightarrow Graph has no edge
- \quad 2-Coloring \Leftrightarrow Graph is bipartite (Graph has no odd cycle)

Example:

- 4-Coloring: Every planar graph!

THM: 3 COL is NP-Complete

Proof:

1. $3 \mathbf{C O L} \in \mathbf{N P}$
(Easy! ©)
2. 3 SAT $\leq \mathrm{p} 3 \mathrm{COL}$

Goal:
Convert \emptyset => (Poly-time) G, such that \emptyset is satisfiable \Leftrightarrow G has a 3-Coloring

$$
\begin{aligned}
& \emptyset=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m} \\
& \text { Eg: Where } C_{i}=X_{7} \vee \bar{X}_{9} \vee X_{5} \\
& \text { n varibles: } X_{1}, X_{2}, \ldots, X_{n}
\end{aligned}
$$

Inset Or-Gadget:

Example:

Assume \emptyset has a satisfy assignment
$\mathrm{X}_{2}=\mathrm{F}, \mathrm{X}_{7}=\mathrm{T}, \mathrm{X}_{9}=\mathrm{F}$
Then G has 3 coloring as follow:

3 COL $\leq p$ PLANAR-3 COL

PLANAR-3COL $=\{\langle G\rangle: G$ is planar and has a 3-Coloring $\}$

Goal: Put a gadget in every across, make u and v have different color x and y have different color

TBC...

