CSE 431 Spring 2015
 Assignment \#4

Due: Monday, May 4, 2015
Reading assignment: Read Sections 7.1 and 7.2 of Sipser's text.

Problems:

1. Let $J=\left\{w \mid w=0 x\right.$ for some $x \in A_{T M}$ or $w=1 y$ for some $\left.y \in \overline{A_{T M}}\right\}$. Show that neither J nor \bar{J} is Turing-recognizable.
2. Show that there is an undecidable language contained in 1^{*}.
3. Which of the following problems are decidable? Justify each answer:
(a) Given a Turing machine M, does M accept 0101 ?
(b) Given Turing machines M and N, is $L(N)$ the complement of $L(M)$?
(c) Given a Turing machine M, integers a and b and an input x, does M run for more than $a|x|^{2}+b$ steps on input x ?
4. Prove that if K and L are decidable by Turing machines running in polynomial time then so are $K \cup L, K L$, and \bar{L}.
5. Let $T R I=\{\langle G\rangle \mid G$ is an undirected graph that contains a triangle $\}$. Prove that there is a polynomial-time Turing machine that decides TRI.
6. (Bonus) Show that the following problem is undecidable: Given a Turing machine M and integers a and b, does there exist an input x on which M runs for more than $a|x|^{2}+b$ steps on input x ?
7. (Bonus) We showed previously that neither $E Q_{T M}$ nor its complement is Turing-recognizable. Your problem is to show that, despite this, if you had a magic black box that decided $A_{T M}$ that you could call repeatedly on different inputs, then you could decide $\overline{E Q_{T M}}$.
