CSE 431 Fall 2019
 Assignment \#8

Due: Thursday, Dec 5, 2019, 11:59 PM
Reading assignment: Read section 9.1 of Sipser's text.

Problems:

1. Show that $T Q B F$ restricted to formulas where the part following the quantifiers is in conjunctive normal form is still PSPACE-complete.
2. Define SORTED-VERSION as the set
$\left\{\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right\rangle \mid n \in \mathbb{N}\right.$ and $\left(b_{1}, \ldots, b_{n}\right)$ is a sorted version of $\left(a_{1}, \ldots, a_{n}\right)$ (non-decreasing) $\}$.
Show that SORTED-VERSION is in L.
3. Recall that a directed graph $G=(V, E)$ is strongly connected iff for every pair of vertices $u, v \in V$, there exists a path in G from u to v.
Let $S T R O N G L Y-C O N N E C T E D=\{\langle G\rangle \mid G$ is a strongly connected directed graph $\}$. In this problem you will show that $S T R O N G L Y-C O N N E C T E D$ is $N L$-complete.
(a) Prove that PATH $\leq_{L} S T R O N G L Y-C O N N E C T E D$. Hint: for your reduction, add a number of "backward" edges.
(b) Prove that $S T R O N G L Y-C O N N E C T E D \in N L$. To do this you will need to use the fact that $\overline{P A T H} \in N L$ (equivalently $N L=c o N L$) twice.
4. Recall that $E X P=\bigcup_{k} T I M E\left(2^{n^{k}}\right)$ and $N E X P=\bigcup_{k} N T I M E\left(2^{n^{k}}\right)$. Your goal in this problem is to show that if $E X P \neq N E X P$ then $P \neq N P$.
To do this it will be helpful to define a padding function that maps any string x into a potentially much longer string that can be easily decoded to figure out what x was. In particular, define

$$
\operatorname{pad}: \Sigma^{*} \times \mathbb{N} \rightarrow(\Sigma \cup\{0,1\})^{*}
$$

by $\operatorname{pad}(x, m)=x 01^{j}$ where j is the smallest natural number such that $\left|x 01^{j}\right| \geq m$.
For a language $A \in \Sigma^{*}$ and a function $g: \mathbb{N} \rightarrow \mathbb{N}$, define the "padded" language

$$
\operatorname{pad}(A, g(n))=\{\operatorname{pad}(x, g(|x|)) \mid x \in A\} .
$$

(a) Prove that if $A \in T I M E\left(n^{6}\right)$ then $\operatorname{pad}\left(A, n^{2}\right) \in T I M E\left(n^{3}\right)$. (Recall that the running time is expressed as a function of the input length.)
(b) Prove that if $A \in \operatorname{NTIME}\left(2^{n^{3}}\right)$ then $\operatorname{pad}\left(A, 2^{n^{3}}\right) \in N T I M E(n)$.
(c) Using padded languages with a suitable bounding function $g(n)$ prove that if $E X P \neq$ $N E X P$ then $P \neq N P$. (Hint: Prove the contrapositive.)
5. (Extra Credit) Let
$A C Y C L I C=\{\langle G\rangle \mid G$ is an undirected graph that does not have a cycle $\}$.
Show that $A C Y C L I C \in L$ without using the fact that $U P A T H \in L$.

