Solutions to some sample 431 final exam questions

1. Consider the following list of properties that might apply to the stated language.

T-rec: The language is Turing-recognizable.
Dec: The language is decidable.
$N P$: The language is in $N P$.
$N P$-c: The language is $N P$-complete.
\mathcal{P} : The language is in \mathcal{P}.
Circle all the properties that you are certain are true.
\times out all the properties that you are certain are false.
Note: You may not be able to do either for some properties.

5. We show that SET-PARTITION in NP-complete.

1. SET-PARTITION $\in \mathrm{NP}:$
(a) Guess a binary string of length n representing a subset $S \subseteq\{1, \ldots, n\}$.
(b) Verify that $\sum_{i \in S} x_{i}=\sum_{i \notin S} x_{i}$.
(c) This polynomial time to check since we can compute the two sums in polynomial times.
2. We show that SET-PARTITION is NP-hard by showing that SU BSET-SUM \leq_{m}^{p} SET-PARTITION.
(a) On input $\left\langle x_{1}, \ldots, x_{m}, t\right\rangle$ for $S U B S E T-S U M$, define $M=\sum_{i=1}^{n} x_{i}$. Assume that $t \leq M$ - if not we simply map the input to $\{1,2\}$. Otherwise, using the hint, remove t, let $n=m+2$ and add two extra numbers $x_{n-1}=M+t$ and $x_{n}=2 M-t$.
(b) The computation is clearly polynomial time since it simply requires the computation of M and the two extra numbers.
(c) Correctness (\Rightarrow) : Suppose that $\left\langle x_{1}, \ldots, x_{m}, t\right\rangle \in S U B S E T-S U M$. Then there is a subset $S^{\prime} \in$ $\{1, \ldots, m\}$ such that $\sum_{i \in S^{\prime}} x_{i}=t$ and $t \leq M$. Therefore the output has $n=m+2$ values and we define $S \subseteq\{1, \ldots, n\}$ by $S=S^{\prime} \cup\{n\}$. Then $\sum_{i \in S} x_{i}=t+2 M-t=2 M$ and $\sum_{i \notin S} x_{i}=M+t+\sum_{i \leq m, i \notin S^{\prime}}=M+t+M-t=2 M$ and hence $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in$ SET-PARTITION as required.
(d) Correctness (\Leftarrow) : Suppose that $\left\langle x_{1}, \ldots, x_{n}\right\rangle \in$ SET-PARTITION Then we know that we have a subset $S \in\{1, \ldots, n\}$ such that $\sum_{i \in S} x_{i}=\sum_{i \notin S} x_{i}$. By definition of the reduction we also
know that the sum of all the elements is $4 M$ so the sum of each side is $2 M$. Because x_{n-1} and x_{n} add up to $3 M$, which is too large, we can't have both elements in S or both elements not in S. Therefore, one of S or \bar{S} contains n but not $n-1$. Assume, without loss of generality that S does. (If not, simply complement S.) Then define $S^{\prime \prime}=S-\{n\}$ and observe that $S^{\prime \prime} \subseteq\{1, \ldots, m\}$. Then $2 M=\sum_{i \in S} x_{i}=2 M-t+\sum_{i \in S^{\prime \prime}} x_{i}$. It follows that $\sum_{i \in S^{\prime \prime}} x_{i}=t$ and hence $\left\langle x_{1}, \ldots, x_{m}, t\right\rangle \in S U B S E T-S U M$ as required.
