Solutions to some sample 431 final exam questions

1. Consider the following list of properties that might apply to the stated language.

T-rec: The language is Turing-recognizable.

- Dec: The language is decidable.
- NP: The language is in NP.
- NP-c: The language is NP-complete.
 - \mathcal{P} : The language is in \mathcal{P} .

Circle all the properties that you are certain are true. \times out all the properties that you are certain are false. NOTE: You may not be able to do either for some properties.

(a)	a) $\{\langle M, w \rangle \mid \text{Turing machine } M \text{ accepts } w\} \dots$	Doc	NP-c	NP	×
(b)	b) $\{\langle M, w \rangle \mid \text{Turing machine } M \text{ accepts } w \text{ in at most } w \text{ steps}\}\dots$	Dec	NP-c	NP	(\mathcal{P})
(c)	c) $\{\langle M, w \rangle \mid \text{Turing machine } M \text{ accepts } w \text{ in at most } 2^{ w } \text{ steps} \} \dots T \text{-rec}$	Dec	NP-c	NP	X
(d)	d) $\{\langle M, w \rangle \mid \text{Turing machine } M \text{ does not accept } w\} \dots$	Dec	NR-c	NK	X
(e)	e) $L(\alpha)$ for some regular expression α	Dec	NP-c	NP	\mathcal{P}
(f)	f) $\{\langle F \rangle \mid F \text{ is a 3-CNF formula which evaluates} $ to true on some truth assignment $\}$	Dec	NP-c	NP	\mathcal{P}
(g)	g) $\{\langle F, x \rangle \mid F \text{ is a 3-CNF formula which evaluates}$ to true on truth assignment $x\}$	Dec	NP-c	NP	P
(h)	h) $\{\langle F \rangle \mid F \text{ is a propositional logic tautology}\}$	Dec	NP-c	\overline{NP}	\mathcal{P}
(i)	i) $\{\langle G, H \rangle \mid G \text{ and } H \text{ are isomorphic graphs}\}$	Dec	NP-c	NP	\mathcal{P}

5. We show that SET-PARTITION in NP-complete.

1. SET-PARTITION \in NP:

- (a) Guess a binary string of length n representing a subset $S \subseteq \{1, \ldots, n\}$.
- (b) Verify that $\sum_{i \in S} x_i = \sum_{i \notin S} x_i$.
- (c) This polynomial time to check since we can compute the two sums in polynomial times.
- 2. We show that SET-PARTITION is NP-hard by showing that SUBSET-SUM \leq_m^p SET-PARTITION.
 - (a) On input $\langle x_1, \ldots, x_m, t \rangle$ for SUBSET-SUM, define $M = \sum_{i=1}^n x_i$. Assume that $t \leq M$ if not we simply map the input to $\{1, 2\}$. Otherwise, using the hint, remove t, let n = m + 2 and add two extra numbers $x_{n-1} = M + t$ and $x_n = 2M t$.
 - (b) The computation is clearly polynomial time since it simply requires the computation of M and the two extra numbers.
 - (c) Correctness (\Rightarrow) : Suppose that $\langle x_1, \ldots, x_m, t \rangle \in SUBSET$ -SUM. Then there is a subset $S' \in \{1, \ldots, m\}$ such that $\sum_{i \in S'} x_i = t$ and $t \leq M$. Therefore the output has n = m + 2 values and we define $S \subseteq \{1, \ldots, n\}$ by $S = S' \cup \{n\}$. Then $\sum_{i \in S} x_i = t + 2M t = 2M$ and $\sum_{i \notin S} x_i = M + t + \sum_{i \leq m, i \notin S'} = M + t + M t = 2M$ and hence $\langle x_1, \ldots, x_n \rangle \in SET$ -PARTITION as required.
 - (d) Correctness (\Leftarrow): Suppose that $\langle x_1, \ldots, x_n \rangle \in SET$ -PARTITION Then we know that we have a subset $S \in \{1, \ldots, n\}$ such that $\sum_{i \in S} x_i = \sum_{i \notin S} x_i$. By definition of the reduction we also

know that the sum of all the elements is 4M so the sum of each side is 2M. Because x_{n-1} and x_n add up to 3M, which is too large, we can't have both elements in S or both elements not in S. Therefore, one of S or \overline{S} contains n but not n-1. Assume, without loss of generality that S does. (If not, simply complement S.) Then define $S'' = S - \{n\}$ and observe that $S'' \subseteq \{1, \ldots, m\}$. Then $2M = \sum_{i \in S} x_i = 2M - t + \sum_{i \in S''} x_i$. It follows that $\sum_{i \in S''} x_i = t$ and hence $\langle x_1, \ldots, x_m, t \rangle \in SUBSET$ -SUM as required.