## CSE 431 Winter 2022 <br> Assignment \#8

Due: Thursday March 10, 2022, 11:59 PM

Reading assignment: Read section 9.1 of Sipser's text.

## Problems:

1. (20 points) Show that $T Q B F$ restricted to formulas where the part following the quantifiers is in conjunctive normal form is still PSPACE-complete.
2. (20 points) Let

$$
T R E E=\{\langle G\rangle \mid G \text { is an undirected graph that is a tree }\} .
$$

Show that $T R E E \in L$. You can use the fact, which we stated but did not prove, that $U P A T H \in L$ where

$$
U P A T H=\{\langle G, s, t\rangle \mid G \text { is an undirected graph with a path from } s \text { to } t\} .
$$

3. (30 points) Recall that a directed graph $G=(V, E)$ is strongly connected iff for every pair of vertices $u, v \in V$, there exists a path in $G$ from $u$ to $v$.
Let $S T R O N G L Y-C O N N E C T E D=\{\langle G\rangle \mid G$ is a strongly connected directed graph $\}$. In this problem you will show that $S T R O N G L Y-C O N N E C T E D$ is $N L$-complete.
(a) Prove that PATH $\leq_{L} S T R O N G L Y-C O N N E C T E D$.

Hint: for your reduction, add a number of "backward" edges.
(b) Prove that $S T R O N G L Y-C O N N E C T E D \in N L$.
4. (30 points) Recall that $E X P=\bigcup_{k} T I M E\left(2^{n^{k}}\right)$ and $N E X P=\bigcup_{k} N T I M E\left(2^{n^{k}}\right)$. Your goal in this problem is to show that if $E X P \neq N E X P$ then $P \neq N P$.
To do this it will be helpful to define a padding function that maps any string $x$ into a potentially much longer string that can be easily decoded to figure out what $x$ was. In particular, define

$$
\operatorname{pad}: \Sigma^{*} \times \mathbb{N} \rightarrow(\Sigma \cup\{0,1\})^{*}
$$

by $\operatorname{pad}(x, m)=x 01^{j}$ where $j$ is the smallest natural number such that $\left|x 01^{j}\right| \geq m$.
For a language $A \in \Sigma^{*}$ and a function $g: \mathbb{N} \rightarrow \mathbb{N}$, define the "padded" language

$$
\operatorname{pad}(A, g(n))=\{\operatorname{pad}(x, g(|x|)) \mid x \in A\} .
$$

(a) Prove that if $A \in \operatorname{TIME}\left(n^{6}\right)$ then $\operatorname{pad}\left(A, n^{2}\right) \in \operatorname{TIME}\left(n^{3}\right)$. (Recall that the running time is expressed as a function of the input length.)
(b) Prove that if $A \in \operatorname{NTIME}\left(2^{n^{3}}\right)$ then $\operatorname{pad}\left(A, 2^{n^{3}}\right) \in \operatorname{NTIME}(n)$.
(c) Using padded languages with a suitable bounding function $g(n)$ prove that if $E X P \neq$ $N E X P$ then $P \neq N P$. (Hint: Prove the contrapositive.)
5. (Extra Credit) Let
$A C Y C L I C=\{\langle G\rangle \mid G$ is an undirected graph that does not have a cycle $\}$.
Show that $A C Y C L I C \in L$ without using the fact that $U P A T H \in L$.

