
1

Lecture 26:
Query Optimization

Monday, December 4th, 2006

2

Outline

• Cost-based optimization 16.5, 16.6

• Cost estimation: 16.4

3

Cost-based Optimizations

• Main idea: apply algebraic laws, until
estimated cost is minimal

• Practically: start from partial plans,
introduce operators one by one
– Will see in a few slides

• Problem: there are too many ways to apply
the laws, hence too many (partial) plans

4

Cost-based Optimizations

Approaches:

• Top-down: the partial plan is a top
fragment of the logical plan

• Bottom up: the partial plan is a bottom
fragment of the logical plan

5

Dynamic Programming

Originally proposed in System R
• Only handles single block queries:

• Heuristics: selections down, projections up
• Dynamic programming: join reordering

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

6

Join Trees
• R1 |×| R2 |×| …. |×| Rn
• Join tree:

• A plan = a join tree
• A partial plan = a subtree of a join tree

R3 R1 R2 R4

7

Types of Join Trees

• Left deep:

R3 R1

R5

R2

R4

8

Types of Join Trees

• Bushy:

R3

R1

R2 R4

R5

9

Types of Join Trees

• Right deep:

R3

R1
R5

R2 R4

10

Dynamic Programming

• Given: a query R1 |×| R2 |×| … |×| Rn
• Assume we have a function cost() that gives

us the cost of every join tree
• Find the best join tree for the query

11

Dynamic Programming

• Idea: for each subset of {R1, …, Rn}, compute the
best plan for that subset

• In increasing order of set cardinality:
– Step 1: for {R1}, {R2}, …, {Rn}
– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
– …
– Step n: for {R1, …, Rn}

• It is a bottom-up strategy
• A subset of {R1, …, Rn} is also called a subquery

12

Dynamic Programming

• For each subquery Q ⊆{R1, …, Rn}
compute the following:
– Size(Q)
– A best plan for Q: Plan(Q)
– The cost of that plan: Cost(Q)

13

Dynamic Programming

• Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)
– Plan({Ri}) = Ri

– Cost({Ri}) = (cost of scanning Ri)

14

Dynamic Programming

• Step i: For each Q ⊆{R1, …, Rn} of
cardinality i do:
– Compute Size(Q) (later…)
– For every pair of subqueries Q’, Q’’

s.t. Q = Q’ ∪ Q’’
compute cost(Plan(Q’) |×| Plan(Q’’))

– Cost(Q) = the smallest such cost
– Plan(Q) = the corresponding plan

15

Dynamic Programming

• Return Plan({R1, …, Rn})

16

Dynamic Programming

To illustrate, we will make the following
simplifications:

• Cost(P1 |×| P2) = Cost(P1) + Cost(P2) +
size(intermediate result(s))

• Intermediate results:
– If P1 = a join, then the size of the intermediate result is

size(P1), otherwise the size is 0

– Similarly for P2
• Cost of a scan = 0

17

Dynamic Programming

• Example:
• Cost(R5 |×| R7) = 0 (no intermediate results)
• Cost((R2 |×| R1) |×| R7)

= Cost(R2 |×| R1) + Cost(R7) + size(R2 |×| R1)
= size(R2 |×| R1)

18

Dynamic Programming

• Relations: R, S, T, U
• Number of tuples: 2000, 5000, 3000, 1000
• Size estimation: T(A |×| B) = 0.01*T(A)*T(B)

19RSTU

STU

RTU

RSU

RST

TU

SU

ST

RU

RT

RS

PlanCostSizeSubquery

20(RT)(SU)60k+50k=110k30MRSTU

(TU)S30k1.5MSTU

(RU)T20k0.6MRTU

(RU)S20k1MRSU

(RT)S60k3MRST

TU030kTU

SU050kSU

ST0150kST

RU020kRU

RT060kRT

RS0100kRS

PlanCostSizeSubquery

21

Reducing the Search Space

• Left-linear trees v.s. Bushy trees

• Trees without cartesian product

Example: R(A,B) |×| S(B,C) |×| T(C,D)

Plan: (R(A,B) |×| T(C,D)) |×| S(B,C) has a cartesian product –
most query optimizers will not consider it

22

Dynamic Programming:
Summary

• Handles only join queries:
– Selections are pushed down (i.e. early)
– Projections are pulled up (i.e. late)

• Takes exponential time in general, BUT:
– Left linear joins may reduce time
– Non-cartesian products may reduce time further

23

Rule-Based Optimizers

• Extensible collection of rules
Rule = Algebraic law with a direction

• Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

• Volcano (later SQL Sever)
• Starburst (later DB2)

24

Completing the
Physical Query Plan

• Choose algorithm to implement each
operator
– Need to account for more than cost:

• How much memory do we have ?
• Are the input operand(s) sorted ?

• Decide for each intermediate result:
– To materialize
– To pipeline

25

Materialize Intermediate Results
Between Operators

⋈

⋈

⋈ T

R S

U

HashTable S
repeat read(R, x)

y join(HashTable, x)
write(V1, y)

HashTable T
repeat read(V1, y)

z join(HashTable, y)
write(V2, z)

HashTable U
repeat read(V2, z)

u join(HashTable, z)
write(Answer, u)

HashTable S
repeat read(R, x)

y join(HashTable, x)
write(V1, y)

HashTable T
repeat read(V1, y)

z join(HashTable, y)
write(V2, z)

HashTable U
repeat read(V2, z)

u join(HashTable, z)
write(Answer, u)

V1

V2

26

Materialize Intermediate Results
Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost =

• How much main memory do we need ?
– M =

27

Pipeline Between Operators

⋈

⋈

⋈ T

R S

U

HashTable1 S
HashTable2 T
HashTable3 U
repeat read(R, x)

y join(HashTable1, x)
z join(HashTable2, y)
u join(HashTable3, z)
write(Answer, u)

HashTable1 S
HashTable2 T
HashTable3 U
repeat read(R, x)

y join(HashTable1, x)
z join(HashTable2, y)
u join(HashTable3, z)
write(Answer, u)

pip
eli

ne

28

Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost =

• How much main memory do we need ?
– M =

29

Pipeline in Bushy Trees

⋈

⋈

⋈

XR S

⋈

⋈ Z

Y

⋈

V

T

⋈

I

30

Example

• Logical plan is:

• Main memory M = 101 buffers

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

31

Example

Naïve evaluation:
• 2 partitioned hash-joins
• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

32

Example

Smarter:
• Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
• Step 2: hash S on x into 100 buckets; to disk
• Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash result on

y into 50 buckets (50 buffers) -- here we pipeline
• Cost so far: 3B(R) + 3B(S)

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

33

Example

Continuing:
• How large are the 50 buckets on y ? Answer: k/50.
• If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
• Step 4: read U from disk, hash on y and join with memory
• Total cost: 3B(R) + 3B(S) + B(U) = 55,000

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

34

Example

Continuing:
• If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk

– Each bucket has size k/50 <= 100
• Step 4: partition U into 50 buckets
• Step 5: read each partition and join in memory
• Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

35

Example

Continuing:
• If k > 5000 then materialize instead of pipeline
• 2 partitioned hash-joins
• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

36

Example

Summary:
• If k <= 50, cost = 55,000
• If 50 < k <=5000, cost = 75,000 + 2k
• If k > 5000, cost = 75,000 + 4k

37

Size Estimation

The problem: Given an expression E, compute
T(E) and V(E, A)

• This is hard without computing E
• Will ‘estimate’ them instead

38

Size Estimation

Estimating the size of a projection
• Easy: T(ΠL(R)) = T(R)
• This is because a projection doesn’t

eliminate duplicates

39

Size Estimation
Estimating the size of a selection
• S = σA=c(R)

– T(S) san be anything from 0 to T(R) – V(R,A) + 1
– Estimate: T(S) = T(R)/V(R,A)
– When V(R,A) is not available, estimate T(S) = T(R)/10

• S = σA<c(R)
– T(S) can be anything from 0 to T(R)
– Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)
– When Low, High unavailable, estimate T(S) = T(R)/3

40

Size Estimation

Estimating the size of a natural join, R |×|A S
• When the set of A values are disjoint, then

T(R |×|A S) = 0
• When A is a key in S and a foreign key in

R, then T(R |×|A S) = T(R)
• When A has a unique value, the same in R

and S, then T(R |×|A S) = T(R) T(S)

41

Size Estimation

Assumptions:
• Containment of values: if V(R,A) <= V(S,A), then the set

of A values of R is included in the set of A values of S
– Note: this indeed holds when A is a foreign key in R, and a key in

S

• Preservation of values: for any other attribute B,
V(R |×| A S, B) = V(R, B) (or V(S, B))

42

Size Estimation

Assume V(R,A) <= V(S,A)
• Then each tuple t in R joins some tuple(s) in S

– How many ?
– On average T(S)/V(S,A)
– t will contribute T(S)/V(S,A) tuples in R |×|A S

• Hence T(R |×|A S) = T(R) T(S) / V(S,A)

In general: T(R |×|A S) = T(R) T(S) / max(V(R,A),V(S,A))

43

Size Estimation

Example:
• T(R) = 10000, T(S) = 20000
• V(R,A) = 100, V(S,A) = 200
• How large is R |×| A S ?

Answer: T(R |×|A S) = 10000 20000/200 = 1M

44

Size Estimation

Joins on more than one attribute:
• T(R |×|A,B S) =

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

45

Histograms

• Statistics on data maintained by the
RDBMS

• Makes size estimation much more accurate
(hence, cost estimations are more accurate)

46

Histograms
Employee(ssn, name, salary, phone)
• Maintain a histogram on salary:

• T(Employee) = 25000, but now we know the distribution

500

> 100k

6500

80k..100k

120005000800200Tuples

60k..80k40k..60k20k..40k0..20kSalary:

47

Histograms

Ranks(rankName, salary)
• Estimate the size of Employee |×| Salary Ranks

500

> 100k

6500

80k..100k

120005000800200

60k..80k40k..60k20k..40k0..20kEmployee

2

> 100k

100

80k..100k

8040208

60k..80k40k..60k20k..40k0..20kRanks

48

Histograms

• Eqwidth

• Eqdepth

315297391042
80..10060..8040..6020..400..20

20002000200020002000
55..10050..5648..5044..480..44

