
Introduction to Database Systems
CSE 444

Lecture 3: SQL (part 2)

CSE 444 - Spring 2009

2

Outline

•  Aggregations (6.4.3 – 6.4.6)

•  Examples, examples, examples…

•  Nulls (6.1.6 - 6.1.7) [Old edition: 6.1.5-6.1.6]

•  Outer joins (6.3.8)

CSE 444 - Spring 2009

3

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=‘Toyota’

SQL supports several aggregation operations:

 sum, count, min, max, avg

CSE 444 - Spring 2009

4

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)
FROM Product
WHERE year > 1995

same as Count(*)

We probably want:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: Count

CSE 444 - Spring 2009

5

Purchase(product, date, price, quantity)

More Examples

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

CSE 444 - Spring 2009

6

Simple Aggregations Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘Bagel’

90 (= 60+30)

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

7

Grouping and Aggregation

Purchase(product, price, quantity)

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Let’s see what this means…

Find total quantities for all sales over $1, by product.

CSE 444 - Spring 2009

8

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and aggregates.

CSE 444 - Spring 2009

9

1&2. FROM-WHERE-GROUPBY

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

CSE 444 - Spring 2009

10

3. SELECT

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

11

GROUP BY v.s. Nested Quereis

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
 FROM Purchase y
 WHERE x.product = y.product
 AND price > 1)
 AS TotalSales
FROM Purchase x
WHERE price > 1

Why twice ?

12

Another Example

SELECT product,
 sum(quantity) AS SumSales,
 max(price) AS MaxQuantity
FROM Purchase
GROUP BY product

What does
it mean ?

CSE 444 - Spring 2009

13

HAVING Clause

SELECT product, Sum(quantity)
FROM Purchase
WHERE price > 1
GROUP BY product
HAVING Sum(quantity) > 30

Same query as earlier, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

CSE 444 - Spring 2009

14

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions
 and on attributes a1,…,ak

Why ?

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

15

General form of Grouping
and Aggregation

Evaluation steps:

1.  Evaluate FROM-WHERE, apply condition C1

2.  Group by the attributes a1,…,ak

3.  Apply condition C2 to each group (may have aggregates)

4.  Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

CSE 444 - Spring 2009

16

Advanced SQLizing

1.  Getting around INTERSECT and EXCEPT

2.  Unnesting Aggregates

3.  Finding witnesses

CSE 444 - Spring 2009

17

INTERSECT and EXCEPT:

(SELECT R.A, R.B
FROM R)
 INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE
 EXISTS(SELECT *
 FROM S
 WHERE R.A=S.A and R.B=S.B)

(SELECT R.A, R.B
FROM R)
 EXCEPT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE
 NOT EXISTS(SELECT *
 FROM S
 WHERE R.A=S.A and R.B=S.B)

Can unnest.
How ?

INTERSECT and EXCEPT: not in some DBMSs

18

Unnesting Aggregates

Product (pname, price, company)
Company(cname, city)
Find the number of companies in each city

SELECT DISTINCT city, (SELECT count(*)
 FROM Company Y
 WHERE X.city = Y.city)
FROM Company X

SELECT city, count(*)
FROM Company
GROUP BY city

Equivalent queries

Note: no need for DISTINCT
(DISTINCT is the same as GROUP BY)

19

Unnesting Aggregates

Find the number of products made in each city
SELECT DISTINCT X.city, (SELECT count(*)
 FROM Product Y, Company Z
 WHERE Z.cname=Y.company

 AND Z.city = X.city)
FROM Company X

SELECT X.city, count(*)
FROM Company X, Product Y
WHERE X.cname=Y.company
GROUP BY X.city

They are NOT
equivalent !

(WHY?)

Product (pname, price, company)
Company(cname, city)

What if there
are no products

for a city?

20

More Unnesting

•  Find authors who wrote ≥ 10 documents:

•  Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)
 FROM Wrote
 WHERE Author.login=Wrote.login)
 > 10

This is
SQL by
a novice

Author(login,name)
Wrote(login,url)

CSE 444 - Spring 2009

21

More Unnesting

•  Find all authors who wrote at least 10 documents:

•  Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by
an expert

CSE 444 - Spring 2009

22

Finding Witnesses

Store(sid, sname)
Product(pid, pname, price, sid)

For each store,
find its most expensive products

CSE 444 - Spring 2009

23

Finding Witnesses

SELECT Store.sid, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price

CSE 444 - Spring 2009

24

Finding Witnesses

SELECT Store.sname, Product.pname
FROM Store, Product,
 (SELECT Store.sid AS sid, max(Product.price) AS p
 FROM Store, Product
 WHERE Store.sid = Product.sid
 GROUP BY Store.sid) X
WHERE Store.sid = Product.sid
 and Store.sid = X.sid and Product.price = X.p

To find the witnesses, compute the maximum price
in a subquery

CSE 444 - Spring 2009

25

Finding Witnesses

There is a more concise solution here:

SELECT Store.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid and
 x.price >=
 ALL (SELECT y.price
 FROM Product y
 WHERE Store.sid = y.sid)

CSE 444 - Spring 2009

26

NULLS in SQL

•  Whenever we don’t have a value, we can put a NULL

•  Can mean many things:
–  Value does not exists

–  Value exists but is unknown

–  Value not applicable

–  Etc.

•  The schema specifies for each attribute if can be null
(nullable attribute) or not

•  How does SQL cope with tables that have NULLs ?

CSE 444 - Spring 2009

27

Null Values

•  If x= NULL then 4*(3-x)/7 is still NULL

•  If x= NULL then x=‘Joe’ is UNKNOWN

•  In SQL there are three boolean values:
FALSE = 0

UNKNOWN = 0.5

TRUE = 1

CSE 444 - Spring 2009

28

Null Values

•  C1 AND C2 = min(C1, C2)

•  C1 OR C2 = max(C1, C2)

•  NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND
 (height > 6 OR weight > 190)

E.g.
age=20
height=NULL
weight=200

CSE 444 - Spring 2009

29

Null Values

Unexpected behavior:

Some Person tuples are not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

CSE 444 - Spring 2009

30

Null Values

Can test for NULL explicitly:
–  x IS NULL
–  x IS NOT NULL

Now it includes all Person tuples

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

CSE 444 - Spring 2009

Outerjoins

31

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON
 Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

Product(name, category)
Purchase(prodName, store)

An “inner join”:

Outerjoins

32

 SELECT Product.name, Purchase.store
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.name = Purchase.prodName

Product(name, category)
Purchase(prodName, store)

If we want the never-sold products, need an “outerjoin”:

CSE 444 - Spring 2009

33

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

34

Application

•  Compute, for each product, the total number of sales in
‘September’
 Product(name, category)

 Purchase(prodName, month, store)

 SELECT Product.name, count(*)
 FROM Product, Purchase
 WHERE Product.name = Purchase.prodName
 and Purchase.month = ‘September’
 GROUP BY Product.name

What’s wrong ?
CSE 444 - Spring 2009

35

Application

•  Compute, for each product, the total number of sales in
‘September’
 Product(name, category)

 Purchase(prodName, month, store)

 SELECT Product.name, count(store)
 FROM Product LEFT OUTER JOIN Purchase ON
 Product.name = Purchase.prodName
 and Purchase.month = ‘September’
 GROUP BY Product.name

Now we also get the products who sold in 0 quantity

Need to use
attribute to
get correct
zero count

(6.4.6)

36

Outer Joins

•  Left outer join:
–  Include the left tuple even if there’s no match

•  Right outer join:
–  Include the right tuple even if there’s no match

•  Full outer join:
–  Include both left and right tuples even if there’s no

match

CSE 444 - Spring 2009

