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Outline 

•  Aggregations (6.4.3 – 6.4.6) 

•  Examples, examples, examples… 

•  Nulls (6.1.6 - 6.1.7) [Old edition: 6.1.5-6.1.6] 

•  Outer joins (6.3.8) 
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Aggregation 

SELECT  count(*) 
FROM     Product 
WHERE   year > 1995 

Except count, all aggregations apply to a single attribute 

SELECT  avg(price) 
FROM      Product 
WHERE   maker=‘Toyota’ 

SQL supports several aggregation operations: 

     sum, count, min, max, avg 
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COUNT   applies to duplicates, unless otherwise stated: 

SELECT  Count(category)  
FROM     Product 
WHERE   year > 1995 

same as Count(*) 

We probably want: 

SELECT  Count(DISTINCT category) 
FROM     Product 
WHERE   year > 1995 

Aggregation: Count 
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Purchase(product, date, price, quantity) 

More Examples 

SELECT  Sum(price * quantity) 
FROM      Purchase 

SELECT  Sum(price * quantity) 
FROM      Purchase 
WHERE   product = ‘bagel’ 

What do 
they mean ? 
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Simple Aggregations Purchase 

SELECT  Sum(price * quantity) 
FROM      Purchase 
WHERE   product = ‘Bagel’ 

90  (= 60+30) 

Product Price Quantity 
Bagel 3 20 
Bagel 1.50 20 

Banana 0.5 50 
Banana 2 10 
Banana 4 10 
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Grouping and Aggregation 

Purchase(product, price, quantity) 

SELECT        product, Sum(quantity) AS TotalSales 
FROM           Purchase 
WHERE        price > 1 
GROUP BY  product 

Let’s see what this means… 

Find total quantities for all sales over $1, by product. 
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Grouping and Aggregation 

1. Compute the FROM and WHERE clauses. 

2. Group by the attributes in the GROUPBY 

3. Compute the SELECT clause: grouped attributes and aggregates. 
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1&2. FROM-WHERE-GROUPBY 

Product Price Quantity 
Bagel 3 20 
Bagel 1.50 20 

Banana 0.5 50 
Banana 2 10 
Banana 4 10 
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3. SELECT 

SELECT        product, Sum(quantity) AS TotalSales 
FROM           Purchase 
WHERE        price > 1 
GROUP BY  product 

Product TotalSales 

Bagel 40 

Banana 20 

Product Price Quantity 
Bagel 3 20 
Bagel 1.50 20 

Banana 0.5 50 
Banana 2 10 
Banana 4 10 
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GROUP BY v.s. Nested Quereis 

SELECT       product, Sum(quantity) AS TotalSales 
FROM          Purchase 
WHERE       price > 1 
GROUP BY  product 

SELECT DISTINCT  x.product, (SELECT Sum(y.quantity) 
                                                      FROM     Purchase y 
                                                      WHERE x.product = y.product  
                                                                   AND price > 1) 
                                                    AS TotalSales 
FROM          Purchase x 
WHERE       price > 1 

Why twice ? 
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Another Example 

SELECT      product, 
                     sum(quantity) AS SumSales, 
                     max(price) AS MaxQuantity 
FROM         Purchase 
GROUP BY product 

What does 
it mean ? 
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HAVING Clause 

SELECT       product, Sum(quantity) 
FROM          Purchase 
WHERE       price > 1 
GROUP BY product 
HAVING      Sum(quantity) > 30 

Same query as earlier, except that we consider only products 
that had at least 30 sales. 

HAVING clause contains conditions on aggregates. 
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General form of Grouping 
and Aggregation 

S = may contain attributes a1,…,ak and/or any 
aggregates but NO OTHER ATTRIBUTES 

C1 = is any condition on the attributes in R1,…,Rn 

C2 = is any condition on aggregate expressions 
 and on attributes a1,…,ak 

Why ? 

SELECT  S 
FROM  R1,…,Rn 

WHERE  C1 
GROUP BY a1,…,ak 

HAVING  C2 
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General form of Grouping 
and Aggregation 

Evaluation steps: 

1.  Evaluate FROM-WHERE, apply condition C1 

2.  Group by the attributes a1,…,ak  

3.  Apply condition C2 to each group (may have aggregates) 

4.  Compute aggregates in S and return the result 

SELECT  S 
FROM  R1,…,Rn 

WHERE  C1 
GROUP BY a1,…,ak 

HAVING  C2 
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Advanced SQLizing 

1.  Getting around INTERSECT and EXCEPT 

2.  Unnesting Aggregates 

3.  Finding witnesses 
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INTERSECT and EXCEPT: 

(SELECT R.A, R.B 
FROM    R) 
    INTERSECT 
(SELECT S.A, S.B 
FROM    S) 

SELECT R.A, R.B 
FROM    R 
WHERE 
     EXISTS(SELECT * 
                    FROM S 
                    WHERE R.A=S.A and R.B=S.B) 

(SELECT R.A, R.B 
FROM    R) 
    EXCEPT 
(SELECT S.A, S.B 
FROM    S) 

SELECT R.A, R.B 
FROM    R 
WHERE 
   NOT  EXISTS(SELECT * 
                    FROM S 
                    WHERE R.A=S.A and R.B=S.B) 

Can unnest. 
How ? 

INTERSECT and EXCEPT: not in some DBMSs 
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Unnesting Aggregates 

Product ( pname,  price, company) 
Company(cname, city) 
Find the number of companies in each city 

SELECT DISTINCT city, (SELECT count(*)  
                                            FROM Company Y  
                                            WHERE X.city = Y.city) 
FROM  Company X 

SELECT city,  count(*) 
FROM   Company 
GROUP BY city 

Equivalent queries 

Note: no need for DISTINCT 
(DISTINCT is the same as GROUP BY) 
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Unnesting Aggregates 

Find the number of products made in each city 
SELECT DISTINCT X.city, (SELECT count(*)  
                                                FROM Product Y, Company Z 
                                                WHERE Z.cname=Y.company 

     AND Z.city = X.city) 
FROM  Company X 

SELECT X.city, count(*) 
FROM Company X, Product Y 
WHERE X.cname=Y.company  
GROUP BY X.city 

They are NOT 
equivalent ! 

(WHY?) 

Product ( pname,  price, company) 
Company(cname, city) 

What if there 
are no products 

for a city? 
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More Unnesting 

•  Find authors who wrote ≥ 10 documents: 

•  Attempt 1: with nested queries 

SELECT DISTINCT Author.name 
FROM          Author 
WHERE        (SELECT count(Wrote.url) 
                      FROM Wrote 
                      WHERE Author.login=Wrote.login) 
                          > 10 

This is 
SQL by 
a novice 

Author(login,name) 
Wrote(login,url) 
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More Unnesting 

•  Find all authors who wrote at least 10 documents: 

•  Attempt 2: SQL style (with GROUP BY) 

SELECT       Author.name 
FROM          Author, Wrote 
WHERE       Author.login=Wrote.login 
GROUP BY Author.name 
HAVING      count(wrote.url) > 10 

This is 
SQL  by 
an expert 
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Finding Witnesses 

Store(sid, sname) 
Product(pid, pname, price, sid) 

For each store,  
find its most expensive products 
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Finding Witnesses 

SELECT Store.sid, max(Product.price) 
FROM    Store, Product 
WHERE  Store.sid = Product.sid 
GROUP BY  Store.sid 

Finding the maximum price is easy… 

But we need the witnesses, i.e. the products with max price 
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Finding Witnesses 

SELECT Store.sname, Product.pname 
FROM Store, Product,  
            (SELECT Store.sid AS sid, max(Product.price) AS p 
             FROM    Store, Product  
             WHERE  Store.sid = Product.sid 
              GROUP BY  Store.sid) X 
WHERE  Store.sid = Product.sid  
          and Store.sid = X.sid and Product.price = X.p 

To find the witnesses, compute the maximum price 
in a subquery 
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Finding Witnesses 

There is a more concise solution here: 

SELECT Store.sname, x.pname 
FROM    Store, Product x 
WHERE  Store.sid = x.sid and 
                x.price >=  
                      ALL (SELECT y.price 
                                FROM Product y 
                                WHERE Store.sid = y.sid) 
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NULLS in SQL 

•  Whenever we don’t have a value, we can put a NULL 

•  Can mean many things: 
–  Value does not exists 

–  Value exists but is unknown 

–  Value not applicable 

–  Etc. 

•  The schema specifies for each attribute if can be null 
(nullable attribute) or not 

•  How does SQL cope with tables that have NULLs ? 
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Null Values 

•  If x= NULL then 4*(3-x)/7 is still NULL 

•  If x= NULL then x=‘Joe’    is UNKNOWN 

•  In SQL there are three boolean values: 
FALSE             =  0 

UNKNOWN    =  0.5 

TRUE               =  1 
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Null Values 

•  C1 AND C2   =  min(C1, C2) 

•  C1  OR  C2   =  max(C1, C2) 

•  NOT C1         =  1 – C1 

Rule in SQL: include only tuples that yield TRUE 

SELECT * 
FROM Person 
WHERE  (age < 25) AND  
                (height > 6 OR weight > 190) 

E.g. 
age=20 
height=NULL 
weight=200 
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Null Values 

Unexpected behavior: 

Some Person tuples are not included ! 

SELECT * 
FROM     Person 
WHERE  age < 25  OR  age >= 25 
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Null Values 

Can test for NULL explicitly: 
–  x IS NULL 
–  x IS NOT NULL 

Now it includes all Person tuples 

SELECT * 
FROM     Person 
WHERE  age < 25  OR  age >= 25 OR age IS NULL 
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SELECT Product.name, Purchase.store 
FROM     Product JOIN Purchase ON 
                              Product.name = Purchase.prodName 

SELECT Product.name, Purchase.store 
FROM     Product, Purchase 
WHERE   Product.name = Purchase.prodName 

Same as: 

But Products that never sold will be lost ! 

Product(name, category) 
Purchase(prodName, store) 

An “inner join”: 
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 SELECT Product.name, Purchase.store 
 FROM     Product LEFT OUTER JOIN Purchase ON 
                          Product.name = Purchase.prodName 

Product(name, category) 
Purchase(prodName, store) 

If we want the never-sold products, need an “outerjoin”: 
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Name Category 

Gizmo gadget 

Camera Photo 

OneClick Photo 

ProdName Store 

Gizmo Wiz 

Camera Ritz 

Camera Wiz 

Name Store 

Gizmo Wiz 

Camera Ritz 

Camera Wiz 

OneClick NULL 

Product Purchase 
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Application 

•  Compute, for each product, the total number of sales in 
‘September’ 
 Product(name, category) 

    Purchase(prodName, month, store) 

 SELECT Product.name, count(*) 
 FROM     Product, Purchase  
 WHERE   Product.name = Purchase.prodName 
          and  Purchase.month = ‘September’ 
 GROUP BY Product.name 

What’s wrong ? 
CSE 444 - Spring 2009 
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Application 

•  Compute, for each product, the total number of sales in 
‘September’ 
 Product(name, category) 

    Purchase(prodName, month, store) 

 SELECT Product.name, count(store) 
 FROM     Product LEFT OUTER JOIN Purchase ON 
                  Product.name = Purchase.prodName 
                  and  Purchase.month = ‘September’ 
 GROUP BY Product.name 

Now we also get the products who sold in 0 quantity 

Need to use 
attribute to 
get correct 
zero count 

(6.4.6) 
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Outer Joins 

•  Left outer join: 
–  Include the left tuple even if there’s no match 

•  Right outer join: 
–  Include the right tuple even if there’s no match 

•  Full outer join: 
–  Include both left and right tuples even if there’s no 

match 
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