
Introduction to Database Systems
CSE 444

Lecture 4: Views and Constraints

CSE 444 - Spring 2009

2

Outline

•  Views: Sections 8.1, 8.2, 8.3
–  [Old edition, Sections 6.6 and 6.7]

•  Constraints: Sections 2.3, 7.1, 7.2
–  [Old edition: Sections 7.1 and 7.2 only]

•  Won’t discuss updates ! In sections…

CSE 444 - Spring 2009

3

Views

Views are relations, except that they may not be physically stored

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
 SELECT name, project
 FROM Employee
 WHERE department = ‘Development’

CSE 444 - Spring 2009

4

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

Example

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price) “virtual table”

CSE 444 - Spring 2009

5

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

We can later use the view just like any other relation :

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

CSE 444 - Spring 2009

Example

6

Types of Views

•  Virtual views
–  Used in databases
–  Computed only on-demand – slow at runtime
–  Always up to date

•  Materialized views
–  Used in data warehouses
–  Pre-computed offline – fast at runtime
–  May have stale data
–  Indexes are materialized views (read book)

We discuss
only virtual

views in class

CSE 444 - Spring 2009

7

Queries Over Views:
Query Modification

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

CREATE VIEW CustomerPrice AS
 SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname

View:

Query:

CSE 444 - Spring 2009

8

Queries Over Views:
Query Modification

SELECT DISTINCT u.customer, v.store
FROM (SELECT x.customer, y.price
 FROM Purchase x, Product y
 WHERE x.product = y.pname) u, Purchase v
WHERE u.customer = v.customer AND
 u.price > 100

Modified query:

CSE 444 - Spring 2009

9

Queries Over Views:
Query Modification

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND
 y.price > 100 AND
 x.product = y.pname

Modified and unnested query:

CSE 444 - Spring 2009

10

Applications of Virtual Views

•  Increased physical data independence. E.g.
–  Vertical data partitioning
–  Horizontal data partitioning

•  Logical data independence. E.g.
–  Change schemas of base relations (i.e., stored tables)

•  Security
–  View reveals only what the users are allowed to know

CSE 444 - Spring 2009

11

Vertical Partitioning
SSN Name Address Resume Picture

234234 Mary Huston Clob1… Blob1…

345345 Sue Seattle Clob2… Blob2…

345343 Joan Seattle Clob3… Blob3…

234234 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address

234234 Mary Huston

345345 Sue Seattle

 . . .

SSN Resume

234234 Clob1…

345345 Clob2…

SSN Picture

234234 Blob1…

345345 Blob2…

T1 T2 T3

12

Vertical Partitioning

CREATE VIEW Resumes AS
 SELECT T1.ssn, T1.name, T1.address,
 T2.resume, T3.picture
 FROM T1,T2,T3
 WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

CSE 444 - Spring 2009

13

Vertical Partitioning

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will
be queried by the system ?

CSE 444 - Spring 2009

When do we use vertical partitioning ?

Vertical Partitioning Applications

1.  Can improve performance of some queries
–  When queries touch small fraction of columns

–  Only need to read desired columns from disk
–  Can produce big I/O savings for wide tables

–  Potential benefit in data warehousing applications

•  But
–  Repeated key columns add a lot of overhead

–  Need expensive joins to reconstruct tuples

CSE 444 - Spring 2009 14

15

Vertical Partitioning Applications

2.  When some fields are large and rarely accessed
–  E.g. Picture

3.  In distributed databases
–  Customer personal info at one site, profile at another

4.  In data integration
–  T1 comes from one source
–  T2 comes from a different source

CSE 444 - Spring 2009

Horizontal Partitioning

SSN Name City Country

234234 Mary Houston USA

345345 Sue Seattle USA

345343 Joan Seattle USA

234234 Ann Portland USA

-- Frank Calgary Canada

-- Jean Montreal Canada

Customers
SSN Name City Country
234234 Mary Houston USA

CustomersInHouston

SSN Name City Country
345345 Sue Seattle USA

345343 Joan Seattle USA

CustomersInSeattle

SSN Name City Country
-- Frank Calgary Canada

-- Jean Montreal Canada

CustomersInCanada

17

Horizontal Partitioning

CREATE VIEW Customers AS
 CustomersInHouston
 UNION ALL
 CustomersInSeattle
 UNION ALL
 . . .

CSE 444 - Spring 2009

18

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???

CSE 444 - Spring 2009

19

Horizontal Partitioning

CREATE VIEW Customers AS
 (SELECT * FROM CustomersInHouston
 WHERE city = ‘Houston’)
 UNION ALL
 (SELECT * FROM CustomersInSeattle
 WHERE city = ‘Seattle’)
 UNION ALL
 . . .

Better:

CSE 444 - Spring 2009

Other techniques exist: read DBMS documentation

20

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

SELECT name
FROM CustomersInSeattle

CSE 444 - Spring 2009

21

Horizontal Partitioning Applications

•  Performance optimization
–  Especially for data warehousing

–  E.g. one partition per month

–  E.g. archived applications and active applications

•  Distributed and parallel databases

•  Data integration

CSE 444 - Spring 2009

22

Views and Security

CREATE VIEW PublicCustomers
 SELECT Name, Address
 FROM Customers

Name Address Balance

Mary Houston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520
Fred is

allowed to
see this

Customers:
Fred is not
allowed to
see this

23

Views and Security

Name Address Balance

Mary Huston 450.99

Sue Seattle -240

Joan Seattle 333.25

Ann Portland -520

CREATE VIEW BadCreditCustomers
 SELECT *
 FROM Customers
 WHERE Balance < 0

Customers: John is
not allowed
to see >0
balances

24

Outline

•  Views: Sections 8.1, 8.2, 8.3
–  [Old edition, Sections 6.6 and 6.7]

•  Constraints: Sections 2.3, 7.1, 7.2
–  [Old edition: Sections 7.1 and 7.2 only]

CSE 444 - Spring 2009

Integrity Constraints Motivation

•  ICs help prevent entry of incorrect information

•  DBMS enforces integrity constraints
–  Allows only legal database instances (i.e., those that satisfy

all constraints) to exist

–  Ensures that all necessary checks are always performed and
avoids duplicating the verification logic in each application

CSE 444 - Spring 2009 25

An integrity constraint is a condition specified on a
database schema that restricts the data that can be
stored in an instance of the database.

26

Types of Constraints in SQL

Constraints in SQL:

•  Keys, foreign keys

•  Attribute-level constraints

•  Tuple-level constraints

•  Global constraints: assertions

•  The more complex the constraint, the harder it is to
check and to enforce

simplest

Most
complex

CSE 444 - Spring 2009

27

Key Constraints

OR:

CREATE TABLE Product (
 name CHAR(30) PRIMARY KEY,
 category VARCHAR(20))

CREATE TABLE Product (
 name CHAR(30),
 category VARCHAR(20)

PRIMARY KEY (name))

Product(name, category)

CSE 444 - Spring 2009

28

Keys with Multiple Attributes

CREATE TABLE Product (
 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

Other Keys

CSE 444 - Spring 2009 29

CREATE TABLE Product (
 productID CHAR(10),

 name CHAR(30),
 category VARCHAR(20),
 price INT,

 PRIMARY KEY (productID),
 UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

Foreign Key Constraints

CSE 444 - Spring 2009 30

CREATE TABLE Purchase (
 prodName CHAR(30)
 REFERENCES Product(name),

 date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

May write
just Product

(why ?)

31

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 444 - Spring 2009

Foreign Key Constraints

Foreign Key Constraints

•  Example with multi-attribute primary key

•  (name, category) must be a PRIMARY KEY in Product

CSE 444 - Spring 2009 32

CREATE TABLE Purchase (
 prodName CHAR(30),
 category VARCHAR(20),

 date DATETIME,
 FOREIGN KEY (prodName, category)
 REFERENCES Product(name, category)

33

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

What happens during updates ?

Types of updates:

•  In Purchase: insert/update

•  In Product: delete/update

CSE 444 - Spring 2009

34

What happens during updates ?

•  SQL has three policies for maintaining
referential integrity:

•  Reject violating modifications (default)
•  Cascade: after delete/update do delete/update
•  Set-null set foreign-key field to NULL

READING ASSIGNMENT: 7.1.2 and 7.1.3
 [Old edition: 7.1.5, 7.1.6]

CSE 444 - Spring 2009

Constraints on
Attributes and Tuples

•  Constraints on attributes:
 NOT NULL -- obvious meaning...
 CHECK condition -- any condition !

•  Constraints on tuples
 CHECK condition

CSE 444 - Spring 2009 35

36

CREATE TABLE Purchase (
 prodName CHAR(30)
 CHECK (prodName IN

 (SELECT Product.name
 FROM Product),
 date DATETIME NOT NULL)

What
is the difference from

Foreign-Key ?

CSE 444 - Spring 2009

Constraints on
Attributes and Tuples

37

General Assertions

CREATE ASSERTION myAssert CHECK
 NOT EXISTS(

 SELECT Product.name
 FROM Product, Purchase
 WHERE Product.name = Purchase.prodName
 GROUP BY Product.name
 HAVING count(*) > 200)

CSE 444 - Spring 2009

But most DBMSs do not implement assertions
Instead, they provide triggers
To learn more, read the rest of Chapter 7

