
Introduction to Database Systems 
CSE 444 

Lecture 8: Transactions in SQL 

CSE 444 - Spring 2009 



2 

Where We Are 

•  What we have already learned 
–  Relational model of data 

–  Data manipulation language: SQL 

–  Views and constraints 

–  Database design (E/R diagrams & normalization) 

•  But what if I want to update my data? 

•  Today: transactions in SQL (Sec. 6.6) 
–  Old edition: Sec. 8.6 

CSE 444 - Spring 2009 



3 

Transactions 

•  Problem: An application must perform several 
writes and reads to the database, as a unit 

•  Solution: multiple actions of the application are 
bundled into one unit called Transaction 

•  Very powerful concept 
–  Database transactions (that’s where they started) 
–  Transaction monitors 
–  Transactional memory 

CSE 444 - Spring 2009 



Turing Awards to  
Database Researchers 

•  Charles Bachman 1973 for CODASYL 

•  Edgar Codd 1981 for relational databases 

•  Jim Gray 1998 for transactions 

CSE 444 - Spring 2009 4 



The World Without Transactions 

•  Just write applications that talk to databases 

•  Rely on operating systems for scheduling, 
and for concurrency control 

•  What can go wrong ?  
–  Several famous anomalies 

–  Other anomalies are possible (but not famous) 

5 CSE 444 - Spring 2009 



6 

Lost Updates 

Client 1: 
 UPDATE Customer 
 SET rentals= rentals + 1 
 WHERE cname= ‘Fred’ 

Two people attempt to rent two movies for Fred, 
from two different terminals. What happens ? 

Client 2: 
 UPDATE Customer 
 SET rentals= rentals + 1 
 WHERE cname= ‘Fred’ 

CSE 444 - Spring 2009 



7 

Client 1: rent-a-movie 
x = SELECT rentals FROM Cust 
      WHERE cname= ‘Fred’ 

if (x < 5) 
  { UPDATE Cust 
     SET rentals= rentals + 1 
     WHERE cname= ‘Fred’ } 
else println(“Denied !”) 

Client 2: rent-a-movie 
x = SELECT rentals FROM Cust 
      WHERE cname= ‘Fred’ 

if (x < 5) 
  { UPDATE Cust 
     SET rentals= rentals + 1 
     WHERE cname= ‘Fred’ } 
else println(“Denied !”) 

What’s wrong ? 
CSE 444 - Spring 2009 

Unrepeatable Read 



8 

Client 1: move from gizmogadget 

UPDATE Products  
SET quantity = quantity + 5 
WHERE product = ‘gizmo’ 

UPDATE Products  
SET quantity = quantity - 5 
WHERE product = ‘gadget’ 

Client 2: inventory…. 

SELECT sum(quantity)  
FROM Product 

CSE 444 - Spring 2009 

Inconsistent Read 

What’s wrong ? 



9 

Inconsistent Read 
Client 1: rent-two-movies 
x = SELECT rentals FROM Cust 
      WHERE cname= ‘Fred’ 

if (x < 4) { /* movie 1…*/ 
     UPDATE Cust 
     SET rentals= rentals + 1 
     WHERE cname= ‘Fred’  

    /* ….and movie 2 */ 
     UPDATE Cust 
     SET rentals= rentals + 1 
     WHERE cname= ‘Fred’  
} 
else println(“Denied !”) 

Client 2: rent-a-movie 
x = SELECT rentals FROM Cust 
      WHERE cname= ‘Fred’ 

if (x < 5) 
  { UPDATE Cust 
     SET rentals= rentals + 1 
     WHERE cname= ‘Fred’ } 
else println(“Denied !”) 

What’s wrong ? 



10 

Dirty Reads 
Client 1: transfer $100  acc1 acc2 
X = Account1.balance 
Account2.balance += 100 

If (X>=100) Account1.balance -=100 
else { /* rollback ! */ 
          account2.balance -= 100 
          println(“Denied !”) 

Client 1: transfer $100  acc2  acc3 
Y = Account2.balance 
Account3.balance += 100 

If (Y>=100) Account2.balance -=100 
else { /* rollback ! */ 
          account3.balance -= 100 
          println(“Denied !”) 

What’s wrong ? 



Some Famous anomalies 

•  Dirty read (Write-Read conflict) 
–  T reads data written by T’ while T’ has not committed 

–  What can go wrong: T’ writes more data (which T has already 
read) or T’ aborts 

–  Inconsistent read: T sees some but not all changes made by T’ 

•  Unrepeatable read (Read-Write conflict) 
–  T reads the same value twice and gets two different results 

•  Lost update (Write-Write conflict) 
–  Two tasks T and T’ both modify the same data 

–  T and T’ both commit 

–  Final state shows effects of only T, but not of T’ 

11 



12 

Protection against crashes 

What’s wrong ? 

Client 1: 

UPDATE Accounts 
SET balance= balance - 500 
WHERE name= ‘Fred’ 

UPDATE Accounts 
SET balance = balance + 500 
WHERE name= ‘Joe’ 

Crash ! 

CSE 444 - Spring 2009 



13 

Enter Transactions 

•  Concurrency control 
–  The famous anomalies and more… 

•  Recovery 

CSE 444 - Spring 2009 



14 

Definition 

•  A transaction = one or more operations, 
which reflect a single real-world transition 
–  Happens completely or not at all  

•  Examples  
–  Transfer money between accounts 
–  Rent a movie;  return a rented movie 
–  Purchase a group of products 
–  Register for a class (either waitlisted or allocated) 

•  By using transactions, all previous problems 
disappear CSE 444 - Spring 2009 



15 

Transactions in Applications 

START TRANSACTION 

[SQL statements] 

COMMIT    or     ROLLBACK (=ABORT) 

May be omitted: 
first SQL query 

starts txn 

CSE 444 - Spring 2009 



Transactions in Ad-hoc SQL 

•  Default: each statement = one transaction 

16 CSE 444 - Spring 2009 



17 

Revised Code 

Now it works like a charm 

Client 1: rent-a-movie 
START TRANSACTION 
x = SELECT rentals  
      FROM Cust  
      WHERE cname= ‘Fred’ 

if (x < 5) 
  { UPDATE Cust 
     SET rentals= rentals + 1 
     WHERE cname= ‘Fred’ } 
else println(“Denied !”) 
COMMIT 

Client 2: rent-a-movie 
START TRANSACTION 
x = SELECT rentals  
      FROM Cust 
      WHERE cname= ‘Fred’ 

if (x < 5) 
  { UPDATE Cust 
     SET rentals= rentals + 1 
     WHERE cname= ‘Fred’ } 
else println(“Denied !”) 
COMMIT 



Revised Code 

18 

Client 1: transfer $100  acc1 acc2 
START TRANSACTION 
X = Account1.balance;    Account2.balance += 100 

If (X>=100) { Account1.balance -=100;  COMMIT } 
else {println(“Denied !”; ROLLBACK) 

Client 1: transfer $100  acc2 acc3 
START TRANSACTION 
X = Account2.balance;    Account3.balance += 100 

If (X>=100) { Account2.balance -=100;  COMMIT } 
else {println(“Denied !”; ROLLBACK) 



Using Transactions 

Very easy to use: 

•  START TRANSACTION 

•  COMMIT 

•  ROLLBACK 

But what EXACTLY do they mean ? 

•  Popular culture: ACID 

•  Underlying theory: serializability 

19 CSE 444 - Spring 2009 



20 

Transaction Properties 
ACID 

•  Atomic 
–  State shows either all the effects of txn, or none of them 

•  Consistent 
–  Txn moves from a state where integrity holds, to 

another where integrity holds 
•  Isolated 

–  Effect of txns is the same as txns running one after 
another (ie looks like batch mode) 

•  Durable 
–  Once a txn has committed, its effects remain in the 

database 

CSE 444 - Spring 2009 



21 

ACID: Atomicity 

•  Two possible outcomes for a transaction 
–  It commits: all the changes are made 

–  It aborts: no changes are made 

•  That is, transaction’s activities are all or 
nothing 

CSE 444 - Spring 2009 



22 

ACID: Consistency 

•  The state of the tables is restricted by 
integrity constraints 
–  Account number is unique 
–  Stock amount can’t be negative 
–  Sum of debits and of credits is 0 

•  Constraints may be explicit or implicit 
•  How consistency is achieved: 

–  Programmer makes sure a txn takes a consistent 
state to a consistent state 

–  The system makes sure that the tnx is atomic 

CSE 444 - Spring 2009 



23 

ACID: Isolation 

•  A transaction executes concurrently with 
other transaction 

•  Isolation: the effect is as if each transaction 
executes in isolation of the others 

CSE 444 - Spring 2009 



24 

ACID: Durability 

•  The effect of a transaction must continue to 
exists after the transaction, or the whole 
program has terminated 

•  Means: write data to disk 

CSE 444 - Spring 2009 



25 

ROLLBACK 

•  If the app gets to a place where it can’t 
complete the transaction successfully, it can 
execute ROLLBACK 

•  This causes the system to “abort” the 
transaction 
–  The database returns to the state without any of 

the previous changes made by activity of the 
transaction 

CSE 444 - Spring 2009 



26 

Reasons for Rollback 

•  User changes their mind (“ctl-C”/cancel) 
•  Explicit in program, when app program finds a 

problem  
–  E.g. when the # of rented movies > max # allowed 
–  Use it freely in Project 2 !! 

•  System-initiated abort 
–  System crash 
–  Housekeeping, e.g. due to timeouts 

CSE 444 - Spring 2009 


