
Introduction to Database Systems
CSE 444

Lectures 9-10

Transactions: recovery

CSE 444 - Spring 2009

Outline

•  We are starting to look at DBMS internals

•  Today and next time: transactions & recovery
–  Disks 13.2 [Old edition: 11.3]

–  Undo logging 17.2

–  Redo logging 17.3

–  Redo/undo 17.4

CSE 444 - Spring 2009

The Mechanics of Disk

Mechanical characteristics:

•  Rotation speed (5400RPM)

•  Number of platters (1-30)

•  Number of tracks (<=10000)

•  Number of bytes/track(105)

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
 disk block
Once in memory:
 page
Typically: 4k or 8k or 16k

Disk Access Characteristics

•  Disk latency = time between when command is issued
and when data is in memory

•  Disk latency = seek time + rotational latency
–  Seek time = time for the head to reach cylinder

•  10ms – 40ms

–  Rotational latency = time for the sector to rotate
•  Rotation time = 10ms
•  Average latency = 10ms/2

•  Transfer time = typically 40MB/s
•  Disks read/write one block at a time

CSE 444 - Spring 2009

RAID

Several disks that work in parallel
•  Redundancy: use parity to recover from disk failure
•  Speed: read from several disks at once

Various configurations (called levels):
•  RAID 1 = mirror
•  RAID 4 = n disks + 1 parity disk
•  RAID 5 = n+1 disks, assign parity blocks round robin
•  RAID 6 = “Hamming codes”

CSE 444 - Spring 2009

Design Question

•  Consider the following query:

•  How can the DBMS execute this query given
–  1 GB of memory

–  100 GB TempSensor and 10 GB PressureSensor

CSE 444 - Spring 2009

SELECT S1.temp, S2.pressure
FROM TempSensor S1, PressureSensor S2
WHERE S1.location = S2.location
AND S1.time = S2.time

Buffer Manager

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk = collection
of blocks

Disk space manager

Buffer pool manager

Files and access methods

7

READ
WRITE

INPUT
OUTUPT

choice of frame dictated
by replacement policy

•  Data must be in RAM for DBMS to operate on it!

•  Buffer pool = table of <frame#, pageid> pairs

Buffer Manager

•  Enables higher layers of the DBMS to
assume that needed data is in main memory

•  Needs to decide on page replacement policy
–  LRU, clock algorithm, or other

•  Both work well in OS, but not always in DB

CSE 444 - Spring 2009

Least Recently Used (LRU)

•  Order pages by the time of last accessed

•  Always replace the least recently accessed

P5, P2, P8, P4, P1, P9, P6, P3, P7

Access P6

P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?); the clock algorithm is good approx

Buffer Manager

•  Why not use the OS for the task??

•  Reason 1: Correctness
–  DBMS needs fine grained control for transactions

–  Needs to force pages to disk for recovery purposes

•  Reason 2: Performance
–  DBMS may be able to anticipate access patterns

–  Hence, may also be able to perform prefetching

–  May select better page replacement policy

CSE 444 - Spring 2009

Transaction Management and
the Buffer Manager

Transaction manager operates on buffer pool

•  Recovery: ‘log-file write-ahead’, then careful
policy about which pages to force to disk

•  Concurrency control: locks at the page
level, multiversion concurrency control

Will discuss details during the next few lectures

CSE 444 - Spring 2009

Transaction Management

Two parts:

•  Recovery from crashes: ACID

•  Concurrency control: ACID

Both operate on the buffer pool

Today, we focus on recovery
CSE 444 - Spring 2009

CSE 444 – Spring 2009 13

Problem Illustration

Client 1:
 START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99
 COMMIT

What do we do now?

Crash !

Recovery

From which events below can DBMS recover ?

•  Wrong data entry

•  Disk failure

•  Fire / earthquake / bankruptcy / ….

•  Systems crashes
–  Software errors

–  Power failures

CSE 444 - Spring 2009

Recovery

Type of Crash Prevention

Wrong data entry
Constraints and
Data cleaning

Disk crashes
Redundancy:

e.g. RAID, archive

Fire, theft,
bankruptcy…

Buy insurance,
Change jobs…

System failures
DATABASE
RECOVERY

Most
frequent

System Failures

•  Each transaction has internal state

•  When system crashes, internal state is lost
–  Don’t know which parts executed and which didn’t

–  Need ability to undo and redo

•  Remedy: use a log
–  File that records every single action of each transaction

CSE 444 - Spring 2009

Transactions

•  Assumption: db composed of elements
–  Usually 1 element = 1 block
–  Can be smaller (=1 record) or larger (=1 relation)

•  Assumption: each transaction reads/writes
some elements

CSE 444 - Spring 2009

Primitive Operations of
Transactions

•  READ(X,t)
–  copy element X to transaction local variable t

•  WRITE(X,t)
–  copy transaction local variable t to element X

•  INPUT(X)
–  read element X to memory buffer

•  OUTPUT(X)
–  write element X to disk

CSE 444 - Spring 2009

Example

START TRANSACTION

READ(A,t);

t := t*2;

WRITE(A,t);

READ(B,t);

t := t*2;

WRITE(B,t);

COMMIT;

Atomicity:
BOTH A and B
are multiplied by 2

CSE 544 - Winter 2009 20

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8

READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

CSE 544 - Winter 2009 21

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

CSE 544 - Winter 2009 22

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

CSE 544 - Winter 2009 23

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

CSE 544 - Winter 2009 24

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

CSE 544 - Winter 2009 25

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

CSE 544 - Winter 2009 26

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

CSE 544 - Winter 2009 27

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

CSE 544 - Winter 2009 28

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity

CSE 444 - Spring 2009 30

Buffer Manager Policies

•  STEAL or NO-STEAL
–  Can an update made by an uncommitted transaction overwrite

the most recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE

•  Highest performance: STEAL/NO-FORCE

Solution: Use a Log

•  Log = append-only file containing log records

•  Note: multiple transactions run concurrently,
log records are interleaved

•  After a system crash, use log to:
–  Redo some transactions that did commit

–  Undo other transactions that did not commit

•  Three kinds of logs: undo, redo, undo/redo

CSE 444 - Spring 2009

Undo Logging

Log records
•  <START T>

–  Transaction T has begun

•  <COMMIT T>
–  T has committed

•  <ABORT T>
–  T has aborted

•  <T,X,v> -- Update record
–  T has updated element X, and its old value was v

CSE 444 - Spring 2009

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

WHAT DO WE DO ?

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !
WHAT DO WE DO ?

After Crash

•  In the first example:
–  We UNDO both changes: A=8, B=8

–  The transaction is atomic, since none of its actions has been
executed

•  In the second example
–  We don’t undo anything

–  The transaction is atomic, since both it’s actions have been
executed

CSE 444 - Spring 2009

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be
written to disk before <COMMIT T>

•  Hence: OUTPUTs are done early, before the
transaction commits

CSE 444 - Spring 2009

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Recovery with Undo Log

After system’s crash, run recovery manager

•  Idea 1. Decide for each transaction T whether
it is completed or not
–  <START T>….<COMMIT T>…. = yes
–  <START T>….<ABORT T>……. = yes
–  <START T>……………………… = no

•  Idea 2. Undo all modifications by incomplete
transactions

CSE 444 - Spring 2009

Recovery with Undo Log

Recovery manager:

•  Read log from the end; cases:
<COMMIT T>: mark T as completed

<ABORT T>: mark T as completed

<T,X,v>: if T is not completed
 then write X=v to disk
 else ignore

<START T>: ignore

CSE 444 - Spring 2009

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1 in class:
Which updates are
undone ?

Question 2 in class:
How far back
do we need to
read in the log ?

crash

Recovery with Undo Log

•  Note: all undo commands are idempotent
–  If we perform them a second time, no harm done

–  E.g. if there is a system crash during recovery,
simply restart recovery from scratch

CSE 444 - Spring 2009

Recovery with Undo Log

When do we stop reading the log ?

•  We cannot stop until we reach the beginning
of the log file

•  This is impractical

Instead: use checkpointing

CSE 444 - Spring 2009

Checkpointing

Checkpoint the database periodically

•  Stop accepting new transactions

•  Wait until all current transactions complete

•  Flush log to disk

•  Write a <CKPT> log record, flush

•  Resume transactions

CSE 444 - Spring 2009

Undo Recovery with
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

 transactions T2,T3,T4,T5

 other transactions

Nonquiescent Checkpointing

•  Problem with checkpointing: database
freezes during checkpoint

•  Would like to checkpoint while database is
operational

•  Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Spring 2009

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions.
Flush log to disk

•  Continue normal operation

•  When all of T1,…,Tk have completed, write
<END CKPT>. Flush log to disk

CSE 444 - Spring 2009

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

 T4, T5, T6, plus
 later transactions

 earlier transactions plus
 T4, T5, T6

 later transactions
Q: why do we need
<END CKPT> ?

Implementing ROLLBACK

•  Recall: a transaction can end in COMMIT or
ROLLBACK

•  Idea: use the undo-log to implement
ROLLBCACK

•  How ?

•  LSN = Log Seqence Number

•  Log entries for the same transaction are
linked, using the LSN’s

CSE 444 - Spring 2009

Redo Logging

Log records

•  <START T> = transaction T has begun

•  <COMMIT T> = T has committed

•  <ABORT T>= T has aborted

•  <T,X,v>= T has updated element X, and its
new value is v

CSE 444 - Spring 2009

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2009

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X)

•  Hence: OUTPUTs are done late

CSE 444 - Spring 2009

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2009

Recovery with Redo Log

After system’s crash, run recovery manager
•  Step 1. Decide for each transaction T whether

it is completed or not
–  <START T>….<COMMIT T>…. = yes
–  <START T>….<ABORT T>……. = yes
–  <START T>……………………… = no

•  Step 2. Read log from the beginning, redo all
updates of committed transactions

CSE 444 - Spring 2009

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

CSE 444 - Spring 2009

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

•  Flush to disk all blocks of committed
transactions (dirty blocks), while continuing
normal operation

•  When all blocks have been written, write
<END CKPT>

CSE 444 - Spring 2009

Redo Recovery with
Nonquiescent Checkpointing

…
<START T1>
…
<COMMIT T1>
…a
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

Cannot
use

Comparison Undo/Redo

•  Undo logging:
–  OUTPUT must be done early
–  If <COMMIT T> is seen, T definitely has written all its data to

disk (hence, don’t need to redo) – inefficient

•  Redo logging
–  OUTPUT must be done late
–  If <COMMIT T> is not seen, T definitely has not written any

of its data to disk (hence there is not dirty data on disk, no
need to undo) – inflexible

•  Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

CSE 444 - Spring 2009

Steal/Force

No-Steal/No-Force

Steal/No-Force

Undo/Redo Logging

Log records, only one change

•  <T,X,u,v>= T has updated element X, its old
value was u, and its new value is v

CSE 444 - Spring 2009

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be
written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late
relative to <COMMIT T>

CSE 444 - Spring 2009

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT

Recovery with Undo/Redo Log

After system’s crash, run recovery manager

•  Redo all committed transaction, top-down

•  Undo all uncommitted transactions, bottom-up

CSE 444 - Spring 2009

Recovery with Undo/Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

CSE 444 - Spring 2009

Granularity of the Log

•  Physical logging: element = physical page

•  Logical logging: element = data record

•  What are the pros and cons ?

CSE 444 - Spring 2009

Granularity of the Log

•  Modern DBMS:

•  Physical logging for the REDO part
–  Efficiency

•  Logical logging for the UNDO part
–  For ROLLBACKs

CSE 444 - Spring 2009

