
Introduction to Database Systems
CSE 444

Lecture 11

Transactions: concurrency control

(part 1)

CSE 444 - Spring 2009

Outline

•  Serial and Serializable Schedules (18.1)

•  Conflict Serializability (18.2)

•  Locks (18.3)

CSE 444 - Spring 2009 2

The Problem

•  Multiple transactions are running concurrently
T1, T2, …

•  They read/write some common elements
A1, A2, …

•  How can we prevent unwanted interference ?

•  The SCHEDULER is responsible for that

CSE 444 - Spring 2009 3

Some Famous Anomalies

•  What could go wrong if we didn’t have
concurrency control:
–  Dirty reads (including inconsistent reads)

–  Unrepeatable reads

–  Lost updates

Many other things can go wrong too

CSE 444 - Spring 2009 4

Dirty Reads

T1: WRITE(A)

T1: ABORT

T2: READ(A)

CSE 444 - Spring 2009

Write-Read Conflict

5

Inconsistent Read

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

CSE 444 - Spring 2009

Write-Read Conflict

6

Unrepeatable Read

T1: WRITE(A)

T2: READ(A);

T2: READ(A);

CSE 444 - Spring 2009

Read-Write Conflict

7

Lost Update

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);
CSE 444 - Spring 2009

Write-Write Conflict

8

Schedules

•  Given multiple transactions

•  A schedule is a sequence of interleaved
actions from all transactions

CSE 444 - Spring 2009 9

Example

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A,s)

READ(B, t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

CSE 444 - Spring 2009 10

A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 444 - Spring 2009 11

Serializable Schedule

•  A schedule is serializable if it is equivalent to
a serial schedule

CSE 444 - Spring 2009 12

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

Notice:
This is NOT a serial schedule

CSE 444 - Spring 2009 13

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 444 - Spring 2009 14

Ignoring Details

•  Sometimes transactions’ actions can commute
accidentally because of specific updates
–  Serializability is undecidable !

•  Scheduler should not look at transaction details

•  Assume worst case updates
–  Only care about reads r(A) and writes w(A)
–  Not the actual values involved

CSE 444 - Spring 2009 15

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

CSE 444 - Spring 2009 16

Conflict Serializability

Conflicts:

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 444 - Spring 2009 17

Conflict Serializability

•  A schedule is conflict serializable if it can be
transformed into a serial schedule by a series
of swappings of adjacent non-conflicting
actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

CSE 444 - Spring 2009 18

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
•  Build a graph of all transactions Ti

•  Edge from Ti to Tj if Ti makes an action that
conflicts with one of Tj and comes first

•  The test: if the graph has no cycles, then it is
conflict serializable !

CSE 444 - Spring 2009 19

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

CSE 444 - Spring 2009 20

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A

B

B

CSE 444 - Spring 2009 21

Conflict Serializability

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);

Lost write

Equivalent, but can’t swap
CSE 444 - Spring 2009 22

Scheduler

•  The scheduler is the module that schedules the
transaction’s actions, ensuring serializability

•  How ? We discuss three techniques in class:
–  Locks

–  Time stamps (next lecture)

–  Validation (next lecture)

CSE 444 - Spring 2009 23

Locking Scheduler

Simple idea:

•  Each element has a unique lock

•  Each transaction must first acquire the lock
before reading/writing that element

•  If the lock is taken by another transaction,
then wait

•  The transaction must release the lock(s)

CSE 444 - Spring 2009 24

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

CSE 444 - Spring 2009 25

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 26

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! 27

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must
preceed all unlock requests

•  This ensures conflict serializability ! (why?)

CSE 444 - Spring 2009 28

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 29

What about Aborts?

•  2PL enforces conflict-serializable schedules

•  But what if a transaction releases its locks
and then aborts?

•  Serializable schedule definition only
considers transactions that commit
–  Relies on assumptions that aborted transactions

can be undone completely

CSE 444 - Spring 2009 30

Example with Abort
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 31

Strict 2PL

•  Strict 2PL: All locks held by a transaction are
released when the transaction is completed

•  Ensures that schedules are recoverable
–  Transactions commit only after all transactions

whose changes they read also commit

•  Avoids cascading rollbacks

CSE 444 - Spring 2009 32

Deadlock

•  Trasaction T1 waits for a lock held by T2;

•  But T2 waits for a lock held by T3;

•  While T3 waits for

•  . . .

•  . . .and T73 waits for a lock held by T1 !!

•  Could be avoided, by ordering all elements
(see book); or deadlock detection + rollback

CSE 444 - Spring 2009 33

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)
•  U = update lock

–  Initially like S
–  Later may be upgraded to X

•  I = increment lock (for A := A + something)
–  Increment operations commute

Recommended reading: chapter 18.4

CSE 444 - Spring 2009 34

The Locking Scheduler

Taks 1:
Add lock/unlock requests to transactions

•  Examine all READ(A) or WRITE(A) actions

•  Add appropriate lock requests

•  Ensure 2PL !

Recommended reading: chapter 18.5

CSE 444 - Spring 2009 35

The Locking Scheduler

Task 2:
Execute the locks accordingly

•  Lock table: a big, critical data structure in a DBMS !

•  When a lock is requested, check the lock table
–  Grant, or add the transaction to the element’s wait list

•  When a lock is released, re-activate a transaction
from its wait list

•  When a transaction aborts, release all its locks

•  Check for deadlocks occasionally

Recommended reading: chapter 18.5
36

