
Introduction to Database Systems
CSE 444

Lectures 12

Transactions: concurrency control

(part 2)

CSE 444 - Spring 2009

Outline

•  Concurrency control by timestamps (18.8)

•  Concurrency control by validation (18.9)

CSE 444 - Spring 2009 2

Timestamps

•  Each transaction receives a unique timestamp
TS(T)

Could be:

•  The system’s clock
•  A unique counter, incremented by the scheduler

CSE 444 - Spring 2009 3

Timestamps

The timestamp order defines
 the serialization order of the transaction

Main invariant:

CSE 444 - Spring 2009 4

Main Idea

•  For any two conflicting actions, ensure that
their order is the serialized order:

In each of these cases

•  wU(X) . . . rT(X)

•  rU(X) . . . wT(X)

•  wU(X) . . . wT(X)

Answer: Check that TS(U) < TS(T)

When T wants to read X, rT(X), how do we
know U, and TS(U) ?

Read too
late ?

Write too
late ?

5

Timestamps

With each element X, associate
•  RT(X) = the highest timestamp of any

transaction that read X
•  WT(X) = the highest timestamp of any

transaction that wrote X
•  C(X) = the commit bit: true when transaction

with highest timestamp that wrote X committed

If 1 element = 1 page,
these are associated with each page X in the buffer pool

CSE 444 - Spring 2009 6

CSE 544 - Winter 2009 7

Time-based Scheduling

•  Note: simple version that ignores the commit bit

•  Transaction wants to read element X
–  If TS(T) < WT(X) abort
–  Else read and update RT(X) to larger of TS(T) or RT(X)

•  Transaction wants to write element X
–  If TS(T) < RT(X) abort
–  Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
–  Otherwise, write X and update WT(X) to TS(T)

Details

Read too late:

•  T wants to read X, and TS(T) < WT(X)

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

CSE 444 - Spring 2009 8

Details

Write too late:

•  T wants to write X, and TS(T) < RT(X)

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

CSE 444 - Spring 2009 9

Details

Write too late, but we can still handle it:

•  T wants to write X, and
TS(T) >= RT(X) but WT(X) > TS(T)

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(but see later…)

CSE 444 - Spring 2009 10

More Problems

Read dirty data:

•  T wants to read X, and WT(X) < TS(T)

•  Seems OK, but…

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

CSE 444 - Spring 2009 11

More Problems

Write dirty data:

•  T wants to write X, and WT(X) > TS(T)

•  Seems OK not to write at all, but …

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

CSE 444 - Spring 2009 12

Timestamp-based Scheduling

•  When a transaction T requests r(X) or w(X),
the scheduler examines RT(X), WT(X), C(X),
and decides one of:

•  To grant the request, or
•  To rollback T (and restart with later timestamp)
•  To delay T until C(X) = true

CSE 444 - Spring 2009 13

Timestamp-based Scheduling

RULES including commit bit

•  There are 4 long rules in Sec. 18.8.4

•  You should be able to derive them yourself,
based on the previous slides

•  Make sure you understand them !

READING ASSIGNMENT: 18.8.4

CSE 444 - Spring 2009 14

Multiversion Timestamp

•  When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

•  Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

•  Let T read an older version, with appropriate
timestamp

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

CSE 444 - Spring 2009 15

Details

•  When wT(X) occurs,
 create a new version, denoted Xt where t = TS(T)

•  When rT(X) occurs,
 find most recent version Xt such that t < TS(T)
 Notes:

–  WT(Xt) = t and it never changes
–  RT(Xt) must still be maintained to check legality of writes

•  Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

CSE 444 - Spring 2009 16

Tradeoffs

•  Locks:
–  Great when there are many conflicts
–  Poor when there are few conflicts

•  Timestamps
–  Poor when there are many conflicts (rollbacks)
–  Great when there are few conflicts

•  Compromise
–  READ ONLY transactions → timestamps
–  READ/WRITE transactions → locks

CSE 444 - Spring 2009 17

Outline

•  Concurrency control by timestamps (18.8)

•  Concurrency control by validation (18.9)

CSE 444 - Spring 2009 18

Concurrency Control by
Validation

•  Each transaction T defines a read set RS(T) and a
write set WS(T)

•  Each transaction proceeds in three phases:
–  Read all elements in RS(T). Time = START(T)

–  Validate (may need to rollback). Time = VAL(T)

–  Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

CSE 444 - Spring 2009 19

Avoid rT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)

IF RS(T) ∩ WS(U) and FIN(U) > START(T)
 (U has validated and U has not finished before T begun)

Then ROLLBACK(T)

conflicts

CSE 444 - Spring 2009 20

Avoid wT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?

START(T) VAL(T)

IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
 (U has validated and U has not finished before T validates)

Then ROLLBACK(T)

conflicts

21

