
Introduction to Database Systems
CSE 444

Lecture 13

Transactions: Best Practices

(part 1)

CSE 444 - Spring 2009

Today’s Outline

1.  User interface:
1.  Read-only transactions

2.  Weak isolation levels
3.  Transaction implementation in commercial DBMSs

2.  The ARIES recovery method (part 1)

•  Reading: M. J. Franklin. “Concurrency Control and
Recovery”. Posted on class website

2 CSE 444 - Spring 2009

3

READ-ONLY Transactions
Client 1: START TRANSACTION

 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE FROM Product
 WHERE price <=0.99
 COMMIT

Client 2: SET TRANSACTION READ ONLY
 START TRANSACTION
 SELECT count(*)
 FROM Product

 SELECT count(*)
 FROM SmallProduct
 COMMIT

Can help DBMS
improve

performance

4

Isolation Levels in SQL

1.  “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

CSE 444 - Spring 2009

Choosing Isolation Level

•  Trade-off: efficiency vs correctness

•  DBMSs give user choice of level

CSE 444 - Spring 2009 5

Beware!!
•  Default level is often NOT serializable
•  Default level differs between DBMSs
•  Some engines support subset of levels!
•  Serializable may not be exactly ACID

Always read
DBMS docs!

1. Isolation Level: Dirty Reads

Implementation using locks:

•  “Long duration” WRITE locks
–  A.k.a Strict Two Phase Locking (you knew that !)

•  Do not use READ locks
–  Read-only transactions are never delayed

Possible pbs: dirty and inconsistent reads

6 CSE 444 - Spring 2009

2. Isolation Level: Read Committed

Implementation using locks:

•  “Long duration” WRITE locks

•  “Short duration” READ locks
–  Only acquire lock while reading (not 2PL)

•  Possible pbs: unrepeatable reads
–  When reading same element twice,

–  may get two different values
7 CSE 444 - Spring 2009

2. Read Committed in Java

CSE 444 - Spring 2009 8

In the handout: Lecture13.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db.setAutoCommit(false);
readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

In the handout: Lecture13.java – Transaction 2:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db.setAutoCommit(false);
writeAccount();
db.commit();

Can see a
different value

3. Isolation Level: Repeatable Read

Implementation using locks:

•  “Long duration” READ and WRITE locks
–  Full Strict Two Phase Locking

•  This is not serializable yet !!!

9 CSE 444 - Spring 2009

3. Repeatable Read in Java

CSE 444 - Spring 2009 10

In the handout: Lecture13.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

In the handout: Lecture13.java – Transaction 2:
db.setTransactionIsolation(Connection. TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
writeAccount();
db.commit();

Now sees the
same value

3. Repeatable Read in Java

CSE 444 - Spring 2009 11

In the handout: Lecture13.java – Transaction 3:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

In the handout: Lecture13.java – Transaction 4:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
insertAccount();
db.commit();

Can see a
different count

Note: In PostgreSQL will still see the same count.

The Phantom Problem

12

T1:
 select count(*) from R where price>20

 select count(*) from R where price>20

T2:

 insert into R(name,price)
 values(‘Gizmo’, 50)

R1(X), R1(Y), R1(Z), W2(New), R1(X), R1(Y), R1(Z), R1(New)

The schedule is conflict-serializable, yet we get different counts !

“Phantom” = tuple visible only during some part of the transaction

CSE 444 - Spring 2009

The Phantom Problem

•  The problem is in the way we model transactions:
–  Fixed set of elements

•  This model fails to capture insertions, because
these create new elements

•  No easy solutions:
–  Need “predicate locking” but how to implement it?

–  Sol1: Lock on the entire relation R (or chunks)

–  Sol2: If there is an index on ‘price’, lock the index nodes

13 CSE 444 - Spring 2009

4. Serializable in Java

CSE 444 - Spring 2009 14

In the handout: Lecture13.java – Transaction 3:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db.setAutoCommit(false);
countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

In the handout: Lecture13.java – Transaction 4:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db.setAutoCommit(false);
insertAccount();
db.commit();

Now should see
same count

CSE 544 - Winter 2009 15

Commercial Systems

•  DB2: Strict 2PL

•  SQL Server:
–  Strict 2PL for standard 4 levels of isolation

–  Multiversion concurrency control for snapshot isolation

•  PostgreSQL:
–  Multiversion concurrency control

•  Oracle
–  Multiversion concurrency control

Today’s Outline

1.  User’s interface:
1.  Read-only transactions

2.  Weak isolation levels
3.  Transaction implementation in commercial DBMSs

2.  The ARIES recovery method (part 1)

•  Reading: M. J. Franklin. “Concurrency Control and
Recovery”. Posted on class website

16 CSE 444 - Spring 2009

Aries Recovery Algorithm

•  An UNDO/REDO log with lots of clever details

17 CSE 444 - Spring 2009

Granularity in ARIES

•  Physical logging for REDO (element=one page)

•  Logical logging for UNDO (element=one record)

•  Result: logs logical operations within a page

•  This is called physiological logging

•  Why this choice?
–  Must do physical REDO since cannot guarantee that db

is in an action-consistent state after crash

–  Must do logical undo because ARIES will only undo
loser transactions (this also facilitates ROLLBACKs)

18 CSE 444 - Spring 2009

The LSN

•  Each log entry receives a unique Log
Sequence Number, LSN
–  The LSN is written in the log entry

–  Entries belonging to the same transaction are
chained in the log via prevLSN

–  LSN’s help us find the end of a circular log file:

19

After crash, log file = (22, 23, 24, 25, 26, 18, 19, 20, 21)
Where is the end of the log ? 18

CSE 444 - Spring 2009

Aries Data Structures

•  Each page on disk has pageLSN:
= LSN of the last log entry for that page

•  Transaction table: each entry has lastLSN
= LSN of the last log entry for that transaction

Transaction table tracks all active transactions

•  Dirty page table: each entry has recoveryLSN
= LSN of earliest log entry that made it dirty

Dirty page table tracks all dirty pages

20 CSE 444 - Spring 2009

21

Checkpoints

•  Write into the log
–  Contents of transactions table

–  Contents of dirty page table

•  Very fast ! No waiting, no END CKPT

•  But, effectiveness is limited by dirty pages

–  There is a background process that periodically
sends dirty pages to disk

CSE 444 - Spring 2009

22

ARIES Recovery in Three Steps

•  Analysis pass
–  Figure out what was going on at time of crash

–  List of dirty pages and running transactions

•  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not

commit

–  Get back state at the moment of the crash

•  Undo pass
–  Remove effects of all uncommitted transactions

–  Log changes during undo in case of another crash
during undo

CSE 444 - Spring 2009

23

ARIES Method Illustration

[Franklin97]

May be in
reverse order

CSE 444 - Spring 2009

ARIES Method

•  More details and long example next lecture

CSE 444 - Spring 2009 24

