
Introduction to Database Systems
CSE 444

Lecture 14

Transactions: Best Practices

(part 2)

CSE 444 - Spring 2009

Today’s Outline

1.  The ARIES recovery method (part 2)

2.  Snapshot isolation

•  Reading: M. J. Franklin. “Concurrency Control and
Recovery”. Posted on class website

2 CSE 444 - Spring 2009

ARIES Overview

•  Undo/redo log with lots of clever details

•  Physiological logging

•  Each log entry has unique Log Sequence Number,
LSN

3 CSE 444 - Spring 2009

Aries Data Structures

•  Each page on disk has pageLSN:
= LSN of the last log entry for that page

•  Transaction table: each entry has lastLSN
= LSN of the last log entry for that transaction

Transaction table tracks all active transactions

•  Dirty page table: each entry has recoveryLSN
= LSN of earliest log entry that made it dirty

Dirty page table tracks all dirty pages

4 CSE 444 - Spring 2009

5

Checkpoints

•  Write into the log
–  Contents of transactions table

–  Contents of dirty page table

•  Very fast ! No waiting, no END CKPT

•  But, effectiveness is limited by dirty pages

–  There is a background process that periodically
sends dirty pages to disk

CSE 444 - Spring 2009

6

ARIES Recovery in Three Steps

•  Analysis pass
–  Figure out what was going on at time of crash

–  List of dirty pages and running transactions

•  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not

commit

–  Get back state at the moment of the crash

•  Undo pass
–  Remove effects of all uncommitted transactions

–  Log changes during undo in case of another crash
during undo

CSE 444 - Spring 2009

7

ARIES Method Illustration

[Franklin97]

May be in
reverse order

CSE 444 - Spring 2009

8

Analysis Phase
•  Goal

–  Determine point in log where to start REDO
–  Determine set of dirty pages when crashed

•  Conservative estimate of dirty pages

–  Identify active transactions when crashed

•  Approach
–  Rebuild transactions table and dirty pages table
–  Start from the latest checkpoint
–  Scan the log, and update the two tables accordingly
–  Find oldest recoveryLSN (firstLSN) in dirty pages tables

CSE 444 - Spring 2009

9

Redo Phase

•  Goal: redo all updates since firstLSN

•  For each log record
–  If affected page is not in the Dirty Page Table then

do not update

–  If affected page is in the Dirty Page Table but
recoveryLSN > LSN of record, then no update

–  Else need to read the page from disk; if pageLSN
> LSN, then no update

–  Otherwise perform update

CSE 444 - Spring 2009

10

Undo Phase

•  Goal: undo effects of aborted transactions

•  Identifies all loser transactions in trans. table

•  Scan log backwards
–  Undo all operations of loser transactions

–  Undo each operation unconditionally

–  All ops. logged with compensation log records (CLR)

–  Never undo a CLR
•  Look-up the UndoNextLSN and continue from there

CSE 444 - Spring 2009

11

Handling Crashes during Undo

[Franklin97]

CSE 444 - Spring 2009

Today’s Outline

1.  The ARIES recovery method (part 2)

2.  Snapshot isolation

•  Reading: M. J. Franklin. “Concurrency Control and
Recovery”. Posted on class website

12 CSE 444 - Spring 2009

Snapshot Isolation

•  A type of multiversion concurrency control algorithm

•  Provides yet another level of isolation

•  Very efficient, and very popular
–  Oracle, PostgreSQL, SQL Server 2005

•  Prevents many classical anomalies BUT…

•  Not serializable (!), yet ORACLE and PostgreSQL
use it even for SERIALIZABLE transactions!

13 CSE 444 - Spring 2009

Snapshot Isolation Rules

•  Each transactions receives a timestamp TS(T)

•  Transaction T sees snapshot at time TS(T) of the database

•  When T commits, updated pages are written to disk

•  Write/write conflicts resolved by “first committer wins” rule

•  Read/write conflicts are ignored

14 CSE 444 - Spring 2009

Snapshot Isolation (Details)

•  Multiversion concurrency control:
–  Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).

•  When T writes X: if other transaction updated X, abort
–  Not faithful to “first committer” rule, because the other

transaction U might have committed after T. But once we
abort T, U becomes the first committer 

15 CSE 444 - Spring 2009

What Works and What Not

•  No dirty reads (Why ?)

•  No inconsistent reads (Why ?)
–  A: Each transaction reads a consistent snapshot

•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not caught !

16 CSE 444 - Spring 2009

Write Skew

17

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

CSE 444 - Spring 2009

Write Skews Can Be Serious

•  Acidicland had two viceroys, Delta and Rho

•  Budget had two registers: taXes, and spendYng

•  They had high taxes and low spending…

18

Delta:
 READ(taXes);
 if taXes = ‘High’
 then { spendYng = ‘Raise’;
 WRITE(spendYng) }
 COMMIT

Rho:
 READ(spendYng);
 if spendYng = ‘Low’
 then {taXes = ‘Cut’;
 WRITE(taXes) }
 COMMIT

… and they ran a deficit ever since.

Questions/Discussions

•  How does snapshot isolation (SI) compare to repeatable
reads and serializable?
–  A: SI avoids most but not all phantoms (e.g., write skew)

•  Note: Oracle & PostgreSQL implement it even for
isolation level SERIALIZABLE

•  How can we enforce serializability at the app. level ?
–  A: Use dummy writes for all reads to create write-write conflicts

19 CSE 444 - Spring 2009

