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About the Midterm 

•  Open book and open notes  
–  But you won’t have time to read during midterm! 

–  No laptops, no mobile devices 

•  Three questions: 
1.  SQL 

2.  ER Diagrams 

3.  Transactions 
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More About the Midterm 

•  Review Lectures 1 through 14  
–  Read the lecture notes carefully 

–  Read the book for extra details, extra explanations 

•  Review Project 1 (Project 2 not on any exam) 

•  Review HW1 and HW2 

•  Take a look at sample midterms 
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Where We Are? 

•  We just started to learn how a DBMS 
executes a query… 

•  … we started with data storage and indexing 
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Data Storage & Indexing: Review 

How does a DBMS store data? 
–  Typically one relation = one file 

–  Heap file: tuples inside file are not sorted 

–  Sequential file: tuples sorted on a key 
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Indexes: Motivation 

•  Index: data structure to speed-up selections 
on search key fields for the index 

•  An index contains a collection of data 
entries, and supports efficient retrieval of all 
data entries with a given search key value k 
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Indexes 

•  Search key = can be any set of fields 
–  not the same as the primary key, nor a key 

•  Index = collection of data entries 

•  Data entry for key k can be: 
–  The actual record with key k 

•  In this case, the index is also a special file organization 

–  (k, RID)  
•  K is the key 

•  RID (Record ID) is a pointer to the record inside the data file 
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Hash-Based Index Example 
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H1 

h1(sid) = 00 

h1(sid) = 11 

sid 

Example hash-based index 
on sid (student id) 

This is a primary index  
because it determines the location  
of indexed records 

In this case, data entries in the index 
are actual data records 
There is no separate data file  

This index is also clustered 

Index File Hash function h1 



Hash-Based Index Example 2 
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Secondary index 
Data entries in index are (key,RID) pairs 

Unclustered index 

Data File Index File 



Tree-Based Indexes 

Data entries 

(Index File) 

(Data file) 

Data Records 

Data entries 

Data Records 

CLUSTERED UNCLUSTERED 

B+ Tree B+ Tree
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Data entries in index can also be data records 



Database Tuning Overview 

•  The database tuning problem 

•  Index selection (discuss in detail) 

•  Horizontal/vertical partitioning (see lecture 4) 

•  Denormalization (discuss briefly) 
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This material is partially based on the book: “Database Management  
Systems” by Ramakrishnan and Gehrke, Ch. 20 
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Levels of Abstraction in a DBMS 

Disk 

Physical Schema 

Conceptual Schema 

External Schema External Schema External Schema 

a.k.a logical schema 
describes stored data 
in terms of data model 

includes storage details 
file organization 
indexes 

views 
access control 
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The Database Tuning Problem 

•  We are given a workload description 
–  List of queries and their frequencies 

–  List of updates and their frequencies 

–  Performance goals for each type of query 

•  Perform physical database design 
–  Choice of indexes 

–  Tuning the conceptual schema 
•  Denormalization, vertical and horizontal partition 

–  Query and transaction tuning 
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The Index Selection Problem 

•  Given a database schema (tables, attributes) 

•  Given a “query workload”: 
–  Workload = a set of (query, frequency) pairs 

–  The queries may be both SELECT and updates 

–  Frequency = either a count, or a percentage 

•  Select a set of indexes that optimizes the 
workload 
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In general this is a very hard problem 
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Index Selection: Which Search Key 

•  Make some attribute K a search key if the 
WHERE clause contains: 
–  An exact match on K 

–  A range predicate on K 

–  A join on K 
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The Index Selection Problem 1 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 

Your workload is this 

What indexes ? 
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The Index Selection Problem 1 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 

Your workload is this 

A:  V(N) and V(P) (hash tables or B-trees) 
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The Index Selection Problem 2 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N>? and N<? 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 

Your workload is this 

What indexes ? 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 
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The Index Selection Problem 2 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE P=? 

100000 queries: 100 queries: 

Your workload is this 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 

A:  definitely V(N) (must B-tree); unsure about  V(P) 

SELECT *  
FROM V 
WHERE N>? and N<? 
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The Index Selection Problem 3 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE N=? and P>? 

100000 queries: 1000000 queries: 

Your workload is this 

What indexes ? 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 
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The Index Selection Problem 3 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE N=? 

SELECT *  
FROM V 
WHERE N=? and P>? 

100000 queries: 1000000 queries: 

Your workload is this 

A:  V(N, P) 

INSERT INTO V 
VALUES (?, ?, ?) 

100000 queries: 
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The Index Selection Problem 4 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE P>? and P<? 

1000 queries: 100000 queries: 

Your workload is this 

SELECT *  
FROM V 
WHERE N>? and N<? 

What indexes ? 
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The Index Selection Problem 4 
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V(M, N, P); 

SELECT *  
FROM V 
WHERE P>? and P<? 

1000 queries: 100000 queries: 

Your workload is this 

SELECT *  
FROM V 
WHERE N>? and N<? 

A: V(N) secondary,   V(P) primary index 
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The Index Selection Problem 

•  SQL Server 
–  Automatically, thanks to AutoAdmin project 

–  Much acclaimed successful research project from 
mid 90’s, similar ideas adopted by the other major 
vendors 

•  PostgreSQL 
–  You will do it manually, part of project 3 

–  But tuning wizards also exist 
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Basic Index Selection Guidelines 

•  Consider queries in workload in order of importance 

•  Consider relations accessed by query 
–  No point indexing other relations 

•  Look at WHERE clause for possible search key 

•  Try to choose indexes that speed-up multiple queries 

•  And then consider the following… 
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Index Selection:  
Multi-attribute Keys 

Consider creating a multi-attribute key on K1, 
K2, … if 

•  WHERE clause has matches on K1, K2, … 
–  But also consider separate indexes 

•  SELECT clause contains only K1, K2, .. 
–  A covering index is one that can be used 

exclusively to answer a query, e.g. index R(K1,K2) 
covers the query: 
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SELECT K2 FROM R WHERE K1=55 
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To Cluster or Not 

•  Range queries benefit mostly from clustering 

•  Covering indexes do not need to be 
clustered: they work equally well unclustered 
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Percentage tuples retrieved 

Cost 

0 100 

Sequential scan 

SELECT * 
FROM R 
WHERE K>? and K<? 
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Hash Table v.s. B+ tree 

•  Rule 1: always use a B+ tree   

•  Rule 2: use a Hash table on K when: 
–  There is a very important selection query on 

equality (WHERE K=?), and no range queries 

–  You know that the optimizer uses a nested loop 
join where K is the join attribute of the inner 
relation (you will understand that in a few lectures) 
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Balance Queries v.s. Updates 

•  Indexes speed up queries 
–  SELECT FROM WHERE 

•  But they usually slow down updates: 
–  INSERT, DELETE, UPDATE 

–  However some updates benefit from indexes 
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UPDATE R 
   SET A = 7 
   WHERE K=55 

CSE 444 - Spring 2009 



Tools for Index Selection 

•  SQL Server 2000 Index Tuning Wizard 

•  DB2 Index Advisor 

•  How they work: 
–  They walk through a large number of 

configurations, compute their costs, and choose 
the configuration with minimum cost 
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Tuning the Conceptual Schema 

•  Index selection 

•  Horizontal/vertical partitioning (see lecture 4) 

•  Denormalization 
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Denormalization 

33 

SELECT x.pid, x.pname 
FROM Product x, Company y 
WHERE x.cid = y.cid and x.price < ? and y.city = ? 

Product(pid, pname, price, cid) 
Company(cid, cname, city) 

A very frequent query: 

How can we speed up this query workload ? 
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Denormalization 
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INSERT INTO ProductCompany 
   SELECT x.pid, x.pname, x.price, y.cname, y.city 
   FROM Product x, Company y 
   WHERE x.cid = y.cid 

Product(pid, pname, price, cid) 
Company(cid, cname, city) 

Denormalize: 

ProductCompany(pid, pname, price, cname, city) 
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Denormalization 
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SELECT x.pid, x.pname 
FROM Product x, Company y 
WHERE x.cid = y.cid and x.price < ? and y.city = ? 

Next, replace the query 

SELECT pid, pname 
FROM ProductCompany 
WHERE price < ? and city = ? 

CSE 444 - Spring 2009 



Issues with Denormalization 

•  It is no longer in BCNF 
–  We have the hidden FD:  cid  cname, city 

•  When Product or Company are updated, we 
need to propagate updates to ProductCompany 
–  Use RULE in PostgreSQL (see PostgreSQL doc.) 

–  Or use a trigger on a different RDBMS 

•  Sometimes cannot modify the query 
–  What do we do then ?  
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Denormalization Using Views 
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INSERT INTO ProductCompany 
   SELECT x.pid, x.pname,.price, y.cid, y.cname, y.city 
   FROM Product x, Company y 
   WHERE x.cid = y.cid; 

DROP Product; DROP Company; 

CREATE VIEW Product AS 
   SELECT pid, pname, price, cid FROM ProductCompany 

CREATE VIEW Company AS 
   SELECT DISTINCT cid, cname, city FROM ProductCompany 


