
Introduction to Database Systems
CSE 444

Lecture 16: Database Tuning

CSE 444 - Spring 2009

About the Midterm

•  Open book and open notes
–  But you won’t have time to read during midterm!

–  No laptops, no mobile devices

•  Three questions:
1.  SQL

2.  ER Diagrams

3.  Transactions

CSE 444 - Spring 2009 2

More About the Midterm

•  Review Lectures 1 through 14
–  Read the lecture notes carefully

–  Read the book for extra details, extra explanations

•  Review Project 1 (Project 2 not on any exam)

•  Review HW1 and HW2

•  Take a look at sample midterms

CSE 444 - Spring 2009 3

Where We Are?

•  We just started to learn how a DBMS
executes a query…

•  … we started with data storage and indexing

CSE 444 - Spring 2009 4

Data Storage & Indexing: Review

How does a DBMS store data?
–  Typically one relation = one file

–  Heap file: tuples inside file are not sorted

–  Sequential file: tuples sorted on a key

5

30

20

40

10

Heap File

1 record

1 page

Student(sid: int, age: int, …)

10

20

30

40

Sequential file sorted on sid

Indexes: Motivation

•  Index: data structure to speed-up selections
on search key fields for the index

•  An index contains a collection of data
entries, and supports efficient retrieval of all
data entries with a given search key value k

CSE 444 - Spring 2009 6

CSE 444 - Spring 2009

Indexes

•  Search key = can be any set of fields
–  not the same as the primary key, nor a key

•  Index = collection of data entries

•  Data entry for key k can be:
–  The actual record with key k

•  In this case, the index is also a special file organization

–  (k, RID)
•  K is the key

•  RID (Record ID) is a pointer to the record inside the data file

7

Hash-Based Index Example

CSE 444 - Spring 2009 8

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

Example hash-based index
on sid (student id)

This is a primary index
because it determines the location
of indexed records

In this case, data entries in the index
are actual data records
There is no separate data file

This index is also clustered

Index File Hash function h1

Hash-Based Index Example 2

CSE 444 - Spring 2009 9

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H2 age

h2(age) = 00

h2(age) = 01

Secondary index
Data entries in index are (key,RID) pairs

Unclustered index

Data File Index File

Tree-Based Indexes

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

10 CSE 444 - Spring 2009

Data entries in index can also be data records

Database Tuning Overview

•  The database tuning problem

•  Index selection (discuss in detail)

•  Horizontal/vertical partitioning (see lecture 4)

•  Denormalization (discuss briefly)

11

This material is partially based on the book: “Database Management
Systems” by Ramakrishnan and Gehrke, Ch. 20

CSE 444 - Spring 2009

CSE 444 - Spring 2009

Levels of Abstraction in a DBMS

Disk

Physical Schema

Conceptual Schema

External Schema External Schema External Schema

a.k.a logical schema
describes stored data
in terms of data model

includes storage details
file organization
indexes

views
access control

12

The Database Tuning Problem

•  We are given a workload description
–  List of queries and their frequencies

–  List of updates and their frequencies

–  Performance goals for each type of query

•  Perform physical database design
–  Choice of indexes

–  Tuning the conceptual schema
•  Denormalization, vertical and horizontal partition

–  Query and transaction tuning

13 CSE 444 - Spring 2009

The Index Selection Problem

•  Given a database schema (tables, attributes)

•  Given a “query workload”:
–  Workload = a set of (query, frequency) pairs

–  The queries may be both SELECT and updates

–  Frequency = either a count, or a percentage

•  Select a set of indexes that optimizes the
workload

14

In general this is a very hard problem

CSE 444 - Spring 2009

Index Selection: Which Search Key

•  Make some attribute K a search key if the
WHERE clause contains:
–  An exact match on K

–  A range predicate on K

–  A join on K

15 CSE 444 - Spring 2009

The Index Selection Problem 1

16

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

CSE 444 - Spring 2009

The Index Selection Problem 1

17

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

CSE 444 - Spring 2009

The Index Selection Problem 2

18

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 444 - Spring 2009

The Index Selection Problem 2

19

V(M, N, P);

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: definitely V(N) (must B-tree); unsure about V(P)

SELECT *
FROM V
WHERE N>? and N<?

CSE 444 - Spring 2009

The Index Selection Problem 3

20

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 444 - Spring 2009

The Index Selection Problem 3

21

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:

Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 444 - Spring 2009

The Index Selection Problem 4

22

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?

CSE 444 - Spring 2009

The Index Selection Problem 4

23

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

CSE 444 - Spring 2009

The Index Selection Problem

•  SQL Server
–  Automatically, thanks to AutoAdmin project

–  Much acclaimed successful research project from
mid 90’s, similar ideas adopted by the other major
vendors

•  PostgreSQL
–  You will do it manually, part of project 3

–  But tuning wizards also exist

24 CSE 444 - Spring 2009

Basic Index Selection Guidelines

•  Consider queries in workload in order of importance

•  Consider relations accessed by query
–  No point indexing other relations

•  Look at WHERE clause for possible search key

•  Try to choose indexes that speed-up multiple queries

•  And then consider the following…
CSE 444 - Spring 2009 25

Index Selection:
Multi-attribute Keys

Consider creating a multi-attribute key on K1,
K2, … if

•  WHERE clause has matches on K1, K2, …
–  But also consider separate indexes

•  SELECT clause contains only K1, K2, ..
–  A covering index is one that can be used

exclusively to answer a query, e.g. index R(K1,K2)
covers the query:

26

SELECT K2 FROM R WHERE K1=55
CSE 444 - Spring 2009

To Cluster or Not

•  Range queries benefit mostly from clustering

•  Covering indexes do not need to be
clustered: they work equally well unclustered

27 CSE 444 - Spring 2009

28

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

CSE 444 - Spring 2009

Hash Table v.s. B+ tree

•  Rule 1: always use a B+ tree

•  Rule 2: use a Hash table on K when:
–  There is a very important selection query on

equality (WHERE K=?), and no range queries

–  You know that the optimizer uses a nested loop
join where K is the join attribute of the inner
relation (you will understand that in a few lectures)

29 CSE 444 - Spring 2009

Balance Queries v.s. Updates

•  Indexes speed up queries
–  SELECT FROM WHERE

•  But they usually slow down updates:
–  INSERT, DELETE, UPDATE

–  However some updates benefit from indexes

30

UPDATE R
 SET A = 7
 WHERE K=55

CSE 444 - Spring 2009

Tools for Index Selection

•  SQL Server 2000 Index Tuning Wizard

•  DB2 Index Advisor

•  How they work:
–  They walk through a large number of

configurations, compute their costs, and choose
the configuration with minimum cost

31 CSE 444 - Spring 2009

Tuning the Conceptual Schema

•  Index selection

•  Horizontal/vertical partitioning (see lecture 4)

•  Denormalization

32 CSE 444 - Spring 2009

Denormalization

33

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Product(pid, pname, price, cid)
Company(cid, cname, city)

A very frequent query:

How can we speed up this query workload ?

CSE 444 - Spring 2009

Denormalization

34

INSERT INTO ProductCompany
 SELECT x.pid, x.pname, x.price, y.cname, y.city
 FROM Product x, Company y
 WHERE x.cid = y.cid

Product(pid, pname, price, cid)
Company(cid, cname, city)

Denormalize:

ProductCompany(pid, pname, price, cname, city)

CSE 444 - Spring 2009

Denormalization

35

SELECT x.pid, x.pname
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < ? and y.city = ?

Next, replace the query

SELECT pid, pname
FROM ProductCompany
WHERE price < ? and city = ?

CSE 444 - Spring 2009

Issues with Denormalization

•  It is no longer in BCNF
–  We have the hidden FD: cid cname, city

•  When Product or Company are updated, we
need to propagate updates to ProductCompany
–  Use RULE in PostgreSQL (see PostgreSQL doc.)

–  Or use a trigger on a different RDBMS

•  Sometimes cannot modify the query
–  What do we do then ?

36 CSE 444 - Spring 2009

Denormalization Using Views

37

INSERT INTO ProductCompany
 SELECT x.pid, x.pname,.price, y.cid, y.cname, y.city
 FROM Product x, Company y
 WHERE x.cid = y.cid;

DROP Product; DROP Company;

CREATE VIEW Product AS
 SELECT pid, pname, price, cid FROM ProductCompany

CREATE VIEW Company AS
 SELECT DISTINCT cid, cname, city FROM ProductCompany

