
Introduction to Database Systems
CSE 444CSE 444

Lecture 4: Views and Constraints

CSE 444 - Summer 2009 1

Outline

• Views: Sections 8.1, 8.2, 8.3
– [Old edition, Sections 6.6 and 6.7]

• Constraints: Sections 2.3, 7.1, 7.2
– [Old edition: Sections 7.1 and 7.2 only]

• Won’t discuss updates ! In sections…

2CSE 444 - Summer 2009

Views
Vi l ti t th t th t b h i ll t dViews are relations, except that they may not be physically stored

For presenting different information to different users

Employee(ssn, name, department, project, salary)

CREATE VIEW Developers AS
SELECT name, project
FROM EmployeeFROM Employee
WHERE department = ‘Development’

3

Payroll has access to Employee, others only to Developers
CSE 444 - Summer 2009

Example

Purchase(customer, product, store)
Product(pname, price)

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.priceSELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

CustomerPrice(customer, price) “virtual table”

4CSE 444 - Summer 2009

Example

Purchase(customer, product, store)
Product(pname, price)

We can later use the view just like any other relation :

CustomerPrice(customer, price)

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u Purchase v

We can later use the view just like any other relation :

FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

5CSE 444 - Summer 2009

Types of Views
We discuss

• Virtual views
– Used in databases

C t d l d d l t ti

only virtual
views in class

– Computed only on-demand – slow at runtime
– Always up to date

• Materialized views
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data

Indexes are materialized views (read book)
6

– Indexes are materialized views (read book)
CSE 444 - Summer 2009

Queries Over Views:Queries Over Views:
Query Modification

CREATE VIEW CustomerPrice AS
SELECT t iView: SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

View:

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u Purchase vQ FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

Query:

7CSE 444 - Summer 2009

Queries Over Views:Queries Over Views:
Query Modification

Modified query:
SELECT DISTINCT u.customer, v.store
FROM (SELECT x.customer, y.price

FROM Purchase x Product yFROM Purchase x, Product y
WHERE x.product = y.pname) u, Purchase v

WHERE u.customer = v.customer AND
u.price > 100

8CSE 444 - Summer 2009

Queries Over Views:Queries Over Views:
Query Modification

Modified and unnested query:
SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x customer = v customer ANDWHERE x.customer v.customer AND

y.price > 100 AND
x.product = y.pname

9CSE 444 - Summer 2009

Applications of Virtual Views

• Increased physical data independence. E.g.
– Vertical data partitioning

H i t l d t titi i– Horizontal data partitioning

• Logical data independence E g• Logical data independence. E.g.
– Change schemas of base relations (i.e., stored

tables)

• Security

10

– View reveals only what the users are allowed to know
CSE 444 - Summer 2009

Vertical Partitioning
SSN Name Address Resume PictureResumes
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
234234 Ann Portland Clob4… Blob4…

T1 T2 T3
SSN Name Address
234234 Mary Huston
345345 Sue Seattle

SSN Resume
234234 Clob1…
345345 Clob2

SSN Picture
234234 Blob1…
345345 Blob2

11

345345 Sue Seattle
. . .

345345 Clob2… 345345 Blob2…

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1 T2 T3FROM T1,T2,T3
WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

12CSE 444 - Summer 2009

Vertical Partitioning

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will
be queried by the system ?

When do we use vertical partitioning ?

13CSE 444 - Summer 2009

Vertical Partitioning Applications

1. Can improve performance of some queries
– When queries touch small fraction of columns

Only need to read desired columns from disk– Only need to read desired columns from disk
– Can produce big I/O savings for wide tables
– Potential benefit in data warehousing applications

• But
R t d k l dd l t f h d– Repeated key columns add a lot of overhead

– Need expensive joins to reconstruct tuples

CSE 444 - Summer 2009 14

Vertical Partitioning Applications

2. When some fields are large and rarely accessed
– E.g. Picture

3. In distributed databases
– Customer personal info at one site, profile at another

4. In data integration
– T1 comes from one source
– T2 comes from a different source

15CSE 444 - Summer 2009

Horizontal Partitioning

SSN Name City Country

Customers
SSN Name City Country

CustomersInHouston

SSN Name City Country
234234 Mary Houston USA
345345 Sue Seattle USA

234234 Mary Houston USA

CustomersInSeattle
345343 Joan Seattle USA
234234 Ann Portland USA
-- Frank Calgary Canada

SSN Name City Country

345345 Sue Seattle USA

345343 Joan Seattle USAg y

-- Jean Montreal Canada
SSN Name City Country

F k C l C d

CustomersInCanada

-- Frank Calgary Canada

-- Jean Montreal Canada
16

Horizontal Partitioning

CREATE VIEW Customers AS
CustomersInHouston

UNION ALL
CustomersInSeattleCustomersInSeattle

UNION ALL
. . .

17CSE 444 - Summer 2009

Horizontal Partitioning

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???

18CSE 444 - Summer 2009

Horizontal Partitioning
Better:
CREATE VIEW Customers AS

(SELECT * FROM CustomersInHouston

Better:

(
WHERE city = ‘Houston’)

UNION ALL
(SELECT * FROM CustomersInSeattle(SELECT FROM CustomersInSeattle
WHERE city = ‘Seattle’)

UNION ALL
. . .

Other techniques exist: read DBMS documentation

19CSE 444 - Summer 2009

q

Horizontal Partitioning

SELECT name
FROM Customers
WHERE it ‘S ttl ’WHERE city = ‘Seattle’

SELECT nameSELECT name
FROM CustomersInSeattle

20CSE 444 - Summer 2009

Horizontal Partitioning Applications

• Performance optimization
– Especially for data warehousing
– E.g. one partition per month
– E.g. archived applications and active applications

• Distributed and parallel databases

• Data integration

21CSE 444 - Summer 2009

Views and Security
Fred is not

Name Address Balance

Customers:
Fred is not
allowed to
see this

Name Address Balance
Mary Houston 450.99
Sue Seattle -240Sue Seattle 240
Joan Seattle 333.25
Ann Portland -520

CREATE VIEW PublicCustomers
SELECT Name Address

Fred is
allowed to
see this

22

SELECT Name, Address
FROM Customers

Views and Security
C t Wilma is

Name Address Balance

Customers: Wilma is
not allowed
to see >0
balancesMary Huston 450.99

Sue Seattle -240
Joan Seattle 333 25

balances

Joan Seattle 333.25
Ann Portland -520

CREATE VIEW BadCreditCustomers
SELECT *

23

FROM Customers
WHERE Balance < 0

Outline

• Views: Sections 8.1, 8.2, 8.3
– [Old edition, Sections 6.6 and 6.7]

• Constraints: Sections 2.3, 7.1, 7.2
– [Old edition: Sections 7.1 and 7.2 only]

24CSE 444 - Summer 2009

Integrity Constraints Motivation

An integrity constraint is a condition specified on a
database schema that restricts the data that can be
stored in an instance of the database

• ICs help prevent entry of incorrect information

stored in an instance of the database.

ICs help prevent entry of incorrect information
• DBMS enforces integrity constraints

– Allows only legal database instances (i.e., those that satisfy
ll t i t) t i tall constraints) to exist

– Ensures that all necessary checks are always performed and
avoids duplicating the verification logic in each application

CSE 444 - Summer 2009 25

Types of Constraints in SQL

Constraints in SQL:
• Keys, foreign keys simplest
• Attribute-level constraints
• Tuple-level constraints

Gl b l t i t ti
Most

• Global constraints: assertions

• The more complex the constraint the harder it is to

complex

The more complex the constraint, the harder it is to
check and to enforce

26CSE 444 - Summer 2009

Key Constraints

CREATE TABLE Product (

Product(name, category)

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

OR: CREATE TABLE Product (
name CHAR(30)name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

27CSE 444 - Summer 2009

Keys with Multiple Attributes

CREATE TABLE Product (

Product(name, category, price)

(
name CHAR(30),
category VARCHAR(20),
price INTprice INT,

PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

28

Gizmo Photo 30

Gizmo Gadget 40

Other Keys

CREATE TABLE Product (
productID CHAR(10),p (),
name CHAR(30),
category VARCHAR(20),
price INTprice INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

CSE 444 - Summer 2009 29

y

Foreign Key Constraints
Referential

CREATE TABLE Purchase (
prodName CHAR(30)

integrity
constraints

prodName CHAR(30)
REFERENCES Product(name),

date DATETIME)

dN i f i k t P d t() M itprodName is a foreign key to Product(name)
name must be a key in Product

May write
just Product

(why ?)

CSE 444 - Summer 2009 30

(y)

Foreign Key Constraints

Name Category ProdName Store

Product Purchase

Gizmo gadget

Camera Photo

Gizmo Wiz

Camera Ritz

OneClick Photo Camera Wiz

31CSE 444 - Summer 2009

Foreign Key Constraints

• Example with multi-attribute primary key

CREATE TABLE Purchase (CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
d t DATETIMEdate DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

• (name category) must be a PRIMARY KEY in Product(name, category) must be a PRIMARY KEY in Product

CSE 444 - Summer 2009 32

What happens during updates ?

Types of updates:
• In Purchase: insert/update

I P d t d l t / d t

Product Purchase

• In Product: delete/update

Name Category

Gizmo gadget

ProdName Store

Gizmo Wiz

Camera Photo

OneClick Photo

Camera Ritz

Camera Wiz

33CSE 444 - Summer 2009

What happens during updates ?

• SQL has three policies for maintaining
referential integrity:
R j t i l ti difi ti (d f lt)• Reject violating modifications (default)

• Cascade: after delete/update do delete/update
S t ll t f i k fi ld t NULL• Set-null set foreign-key field to NULL

READING ASSIGNMENT: 7 1 2 and 7 1 3READING ASSIGNMENT: 7.1.2 and 7.1.3
[Old edition: 7.1.5, 7.1.6]

34CSE 444 - Summer 2009

Constraints onConstraints on
Attributes and Tuples

• Constraints on attributes:
NOT NULL obvious meaningNOT NULL -- obvious meaning...
CHECK condition -- any condition !

• Constraints on tuples• Constraints on tuples
CHECK condition

CSE 444 - Summer 2009 35

Constraints onConstraints on
Attributes and Tuples

What
is the difference from

CREATE TABLE Purchase (

Foreign-Key ?

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
(SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

36

date DATETIME NOT NULL)

CSE 444 - Summer 2009

General Assertions

CREATE ASSERTION myAssert CHECK
NOT EXISTS(

SELECT Product nameSELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)

But most DBMSs do not implement assertions
Instead, they provide triggers
To learn more read the rest of Chapter 7

37CSE 444 - Summer 2009

To learn more, read the rest of Chapter 7

