
Introduction to Database Systems
CSE 444

Lecture 12
Transactions: concurrency control

(part 2)

CSE 444 - Summer 2009 1

Outline

• Concurrency control by timestamps (18.8)
• Concurrency control by validation (18.9)y y ()

CSE 444 - Summer 2009 2

Timestamps

• Each transaction receives a unique timestamp
TS(T)

Could be:

• The system’s clock
• A unique counter incremented by the scheduler• A unique counter, incremented by the scheduler

CSE 444 - Summer 2009 3

Timestamps

Main invariant:Main invariant:

The timestamp order defines
the serialization order of the transaction

CSE 444 - Summer 2009 4

Main IdeaMain Idea

• For any two conflicting actions ensure that• For any two conflicting actions, ensure that
their order is the serialized order:

In each of these casesIn each of these cases
• wU(X) . . . rT(X)
• r (X) w (X)

Read too
late ?

• rU(X) . . . wT(X)
• wU(X) . . . wT(X)
Answer: Check that TS(U) < TS(T)

Write too
late ?Answer: Check that TS(U) < TS(T)

When T wants to read X, rT(X), how do we

late ?

, T(),
know U, and TS(U) ?

5

Timestamps

With each element X, associate
• RT(X) = the highest timestamp of any

t ti th t d Xtransaction that read X
• WT(X) = the highest timestamp of any

transaction that wrote Xtransaction that wrote X
• C(X) = the commit bit: true when transaction

with highest timestamp that wrote X committedg p

If 1 element = 1 page,
these are associated with each page X in the buffer poolthese are associated with each page X in the buffer pool

CSE 444 - Summer 2009 6

Time-based Scheduling

• Note: simple version that ignores the commit bit

Transaction wants to read element X• Transaction wants to read element X
– If TS(T) < WT(X) abort
– Else read and update RT(X) to larger of TS(T) or RT(X)

• Transaction wants to write element X
– If TS(T) < RT(X) abortIf TS(T) RT(X) abort
– Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
– Otherwise, write X and update WT(X) to TS(T)

CSE 444 - Summer 2009 7

Details

Read too late:
• T wants to read X, and TS(T) < WT(X)() ()

START(T) … START(U) … wU(X) . . . rT(X)

Need to rollback T !

CSE 444 - Summer 2009 8

Details

Write too late:
• T wants to write X, and TS(T) < RT(X)() ()

START(T) … START(U) … rU(X) . . . wT(X)

Need to rollback T !

CSE 444 - Summer 2009 9

Details

Write too late, but we can still handle it:
• T wants to write X, and

TS(T) >= RT(X) but WT(X) > TS(T)

START(T) … START(V) … wV(X) . . . wT(X)

Don’t write X at all !
(but see later)(but see later…)

CSE 444 - Summer 2009 10

More Problems

Read dirty data:
• T wants to read X, and WT(X) < TS(T)() ()
• Seems OK, but…

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)() () U() T() ()

If C(X)=false, T needs to wait for it to become true

CSE 444 - Summer 2009 11

More Problems

Write dirty data:
• T wants to write X, and WT(X) > TS(T)() ()
• Seems OK not to write at all, but …

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)() () U() T() ()

If C(X)=false, T needs to wait for it to become true

CSE 444 - Summer 2009 12

Timestamp-based Scheduling

• When a transaction T requests r(X) or w(X),
the scheduler examines RT(X), WT(X), C(X),
and decides one of:and decides one of:

• To grant the request or• To grant the request, or
• To rollback T (and restart with later timestamp)
• To delay T until C(X) = true• To delay T until C(X) = true

CSE 444 - Summer 2009 13

Timestamp-based Scheduling

RULES including commit bit
• There are 4 long rules in Sec. 18.8.4g
• You should be able to derive them yourself,

based on the previous slides
• Make sure you understand them !

READING ASSIGNMENT: 18.8.4

CSE 444 - Summer 2009 14

Multiversion Timestamp

• When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

• Idea: keep multiple versions of X:
X X XXt, Xt-1, Xt-2, . . .

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

• Let T read an older version, with appropriate
timestampp

CSE 444 - Summer 2009 15

Details

• When wT(X) occurs,
create a new version, denoted Xt where t = TS(T)

• When rT(X) occurs,
find most recent version Xt such that t < TS(T)t ()
Notes:
– WT(Xt) = t and it never changes

RT(X) must still be maintained to check legality of writes– RT(Xt) must still be maintained to check legality of writes

• Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1

CSE 444 - Summer 2009 16

Tradeoffs

• Locks:
– Great when there are many conflicts
– Poor when there are few conflictsPoor when there are few conflicts

• Timestamps
– Poor when there are many conflicts (rollbacks)

Great when there are few conflicts– Great when there are few conflicts

• Compromise
– READ ONLY transactions → timestamps
– READ/WRITE transactions → locks

CSE 444 - Summer 2009 17

Outline

• Concurrency control by timestamps (18.8)
• Concurrency control by validation (18.9)y y ()

CSE 444 - Summer 2009 18

Concurrency Control byConcurrency Control by
Validation

• Each transaction T defines a read set RS(T) and a
write set WS(T)
E h t ti d i th h• Each transaction proceeds in three phases:
– Read all elements in RS(T). Time = START(T)
– Validate (may need to rollback). Time = VAL(T)(y) ()
– Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

CSE 444 - Summer 2009 19

Avoid rT(X) - wU(X) Conflicts
VAL(U) FIN(U)

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

U: Read phase Validate Write phase

T: Read phase Validate ?
conflicts

T: Read phase Validate ?

START(T)
IF RS(T) ∩ WS(U) and FIN(U) > START(T)

(U has validated and U has not finished before T begun)
Then ROLLBACK(T)Then ROLLBACK(T)

CSE 444 - Summer 2009 20

Avoid wT(X) - wU(X) Conflicts

START(U) VAL(U) FIN(U)

U: Read phase Validate Write phase

T Read phase Validate Write phase ?
conflicts

T: Read phase Validate Write phase ?

START(T) VAL(T)()
IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)

(U has validated and U has not finished before T validates)
Then ROLLBACK(T)

21CSE 444 - Summer 2009

