Introduction to Database Systems CSE 444

Lecture 2: SQL

Announcements

- Project 1 & Hw 1 are posted on class website
 - Project 1 (SQL) due in two weeks
 - Homework 1 (E/R models etc) due in three weeks
 - Remember: time goes by very fast! Start early!
- On the course website you will find
 - Recommended readings from the book
 - PDF of lecture notes (~morning of class)
- Other

Outline

- Data in SQL
- Simple Queries in SQL (6.1)
- Queries with more than one relation (6.2)
- Subqueries (6.3)

Structured Query Language (SQL)

- Data Definition Language (DDL)
 - Create/alter/delete tables and their attributes
 - Following lectures...
- Data Manipulation Language (DML)
 - Query one or more tables discussed next!
 - Insert/delete/modify tuples in tables

Tables in SQL

Data Types in SQL

- Atomic types
 - Character strings: CHAR(20), VARCHAR(50)
 - Can be of fixed or variable length
 - Numbers: INT, BIGINT, SMALLINT, FLOAT
 - Others: MONEY, DATETIME, ...
- Record (aka tuple)
 - Has atomic attributes
- Table (aka relation)
 - A set of tuples

Book Sec. 2.3.2

Simple SQL Query

Product

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

SELECT *
FROM Product
WHERE category='Gadgets'

Selection

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks

Simple SQL Query

Product

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

SELECT pName, price, manufacturer FROM Product
WHERE price > 100

Selection & Projection

PName	Price	Manufacturer
SingleTouch	\$149.99	Canon
MultiTouch	\$203.99	Hitachi

Details

- SQL is case insensitive
 - SELECT = Select = select
 - Product = product
 - but 'Seattle' ≠ 'seattle' (in general)
- Constants must use single quotes
 - ▶ 'abc' yes
 - ▶ "abc" no

Eliminating Duplicates

Product

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
PowerGizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

Set vs. Bag semantics

SELECT category FROM Product

Category
Gadgets
Gadgets
Photography
Household

SELECT DISTINCT category FROM Product

Category
Gadgets
Photography
Household

Ordering the Results

```
SELECT pName, price, manufacturer
FROM Product
WHERE category='Gadgets'
and price > 10
ORDER BY price, pName
```

- Ties in price attribute broken by pname attribute
- Ordering is ascending by default. Descending:

```
... ORDER BY price, pname DESC
```

Product

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

SELECT DISTINCT category
FROM Product
ORDER BY category

?

SELECT category
FROM Product
ORDER BY pName

?

SELECT DISTINCT category
FROM Product
ORDER BY pName

?

Product

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

SELECT DISTINCT category
FROM Product
ORDER BY category

Category
Gadgets
Household
Photography

SELECT category
FROM Product
ORDER BY pName

Category
Gadgets
Household
Gadgets
Photography

SELECT DISTINCT category
FROM Product
ORDER BY pName

Syntax error*

^{*} Error actually happens during "semantic" analysis of query.

Keys and Foreign Keys

Key∖

Product

<u>PName</u>	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

Key

Company

<u>CName</u>	StockPrice	Country
GizmoWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

Foreign

key

Joins

Product (<u>pName</u>, price, category, manufacturer) Company (<u>cName</u>, stockPrice, country)

Q: Find all products under \$200 manufactured in Japan; return their names and prices!

```
SELECT pName, price
FROM Product, Company
WHERE manufacturer=cName
and country='Japan'
and price <= 200

Join b/w
Product and
Company
```

Joins

Product

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

Company

CName	StockPrice	Country
GizmoWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

SELECT pName, price
FROM Product, Company
WHERE manufacturer=cName
and country='Japan'
and price <= 200

PName	Price
SingleTouch	\$149.99

Tuple Variables

Person (<u>pName</u>, address, works_for) Company (<u>cName</u>, address

which address?

SELECT DISTINCT pName, address

FROM Person, Company

WHERE works_for = cName

SELECT DISTINCT Person.pName, Company.address

FROM Person, Company

WHERE Person.works_for = Company.cName

SELECT DISTINCT X.pName, Y.address

FROM Person as X, Company as Y

WHERE X.works for = Y.cName

Product (<u>pName</u>, price, category, manufacturer) Company (<u>cName</u>, stockPrice, country)

Q: Find all Chinese companies that manufacture products in the 'Toy' category!

SELECT cName FROM WHERE

Product (<u>pName</u>, price, category, manufacturer) Company (<u>cName</u>, stockPrice, country)

Q: Find all Chinese companies that manufacture products in the 'Toy' category!

```
SELECT DISTINCT cName
FROM Product P, Company
WHERE country = 'China'
and P.category = 'Toy'
and P.manufacturer = cName
```

Product (<u>pName</u>, price, category, manufacturer) Company (<u>cName</u>, stockPrice, country)

Q: Find all Chinese companies that manufacture products both in the 'Toy' and 'Electronic' categories.

SELECT DISTINCT cName FROM WHERE

Product (<u>pName</u>, price, category, manufacturer) Company (<u>cName</u>, stockPrice, country)

Q: Find all Chinese companies that manufacture products both in the 'Toy' and 'Electronic' categories.

```
SELECT DISTINCT cName
FROM Product P1, Product P2, Company
WHERE country = 'China'
and P1.category = 'Toy'
and P2.category = 'Electronic'
and P1.manufacturer = cName
and P2.manufacturer = cName
```

Meaning (Semantics) of SQL Queries

Conceptual evaluation strategy (nested for loops):

```
\label{eq:answer} \begin{array}{l} \text{Answer} = \{\} \\ \text{for } x_1 \text{ in } R_1 \text{ do} \\ \text{for } x_2 \text{ in } R_2 \text{ do} \\ & \dots \\ \text{for } x_n \text{ in } R_n \text{ do} \\ & \text{if Conditions} \\ & \text{then } \text{Answer} = \text{Answer} \cup \{(a_1, \dots, a_k)\} \\ \text{return } \text{Answer} \end{array}
```

Using the Formal Semantics

What do these queries compute?

R(a), S(a), T(a)

SELECT DISTINCT R.a.

FROM R, S

WHERE R.a=S.a

Returns $R \cap S$

SELECT DISTINCT R.a

FROM R, S, T

WHERE R.a=S.a

or R.a=T.a

If $S \neq \emptyset$ and $T \neq \emptyset$ then returns $R \cap (S \cup T)$ else returns \emptyset

Joins Introduce Duplicates

Product (<u>pName</u>, price, category, manufacturer) Company (<u>cName</u>, stockPrice, country)

Q: Find all Chinese companies that manufacture some product in the 'Gadgets' category!

```
SELECT country
FROM Product, Company
WHERE manufacturer = cName
and category = 'Gadgets'
```

Joins Introduce Duplicates

Product

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

Company

CName	StockPrice	Country
GizmoWorks	25	USA
Canon	65	Japan
Hitachi	15	Japan

SELECT country
FROM Product, Company
WHERE manufacturer = cName
and category = 'Gadgets'

Country USA USA

Remember to use DISTINCT

Subqueries

- A subquery is a SQL query nested inside a larger query
- Such inner-outer queries are called nested queries
- A subquery may occur in:
 - A SELECT clause
 - A FROM clause
 - A WHERE clause
- Rule of thumb: avoid writing nested queries when possible; keep in mind that sometimes it's impossible

1. Subqueries in SELECT

Product (pname, price, cid) Company (cid, cname, city)

Q: For each product return the city where it is manufactured!

```
SELECT P.pname, (SELECT C.city
FROM Company C
WHERE C.cid = P.cid)
FROM Product P
```

What happens if the subquery returns more than one city?

Runtime error

1. Subqueries in SELECT

Product (pname, price, cid) Company (cid, cname, city)

Q: For each product return the city where it is manufactured!

```
SELECT P.pname, (SELECT C.city
FROM Company C
WHERE C.cid = P.cid)
FROM Product P
```

"unnesting the query"

SELECT P.pname, C.city
FROM Product P, Company C
WHERE C.cid = P.cid

Whenever possible, don't use nested queries

1. Subqueries in SELECT

Product (pname, price, cid) Company (cid, cname, city)

Q: Compute the number of products made by each company!

```
SELECT C.cname, (SELECTcount (*)
FROM Product P
WHERE P.cid = C.cid)
FROM Company C
```

Better: we can unnest by using a GROUP BY (next lecture)

2. Subqueries in FROM

Product (pname, price, cid) Company (cid, cname, city)

Q: Find all products whose prices is > 20 and < 30!

```
SELECT X.pname
FROM (SELECT *
FROM Product as P
WHERE price >20 ) as X
WHERE X.price < 30
```

unnesting

```
SELECT pname
FROM Product
WHERE price > 20 and price < 30
```

Product (pname, price, cid) Company (cid, cname, city)

Existential quantifiers 3

Q: Find all companies that make <u>some</u> products with price < 100!

Using EXISTS:

```
SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS ( SELECT *
FROM Product P
WHERE C.cid = P.cid
and P.price < 100)
```

Product (pname, price, cid) Company (cid, cname, city)

Existential quantifiers 3

Q: Find all companies that make some products with price < 100!

Using IN:

```
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN ( SELECT P.cid
FROM Product P
WHERE P.price < 100)
```

Product (pname, price, cid) Company (cid, cname, city)

Existential quantifiers 3

Q: Find all companies that make <u>some</u> products with price < 100!

Using ANY:

```
SELECT DISTINCT C.cname
FROM Company C
WHERE 100 > ANY ( SELECT price
FROM Product P
WHERE P.cid = C.cid)
```

Product (pname, price, cid) Company (cid, cname, city)

Existential quantifiers 3

Q: Find all companies that make <u>some</u> products with price < 100!

Now, let's unnest:

```
SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid
and P.price < 100
```

Existential quantifiers are easy ! ©

Product (pname, price, cid) Company (cid, cname, city)

Universal quantifiers ∀

Q: Find all companies that make <u>only</u> products with price < 100! same as:

Q: Find all companies for which all products have price < 100!

Universal quantifiers are more complicated!

1. Find the other companies: i.e. they have some product ≥ 100!

```
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid IN ( SELECT P.cid
FROM Product P
WHERE P.price >= 100)
```

2. Find all companies s.t. all their products have price < 100!

```
SELECT DISTINCT C.cname
FROM Company C
WHERE C.cid NOT IN (SELECT P.cid
FROM Product P
WHERE P.price >= 100)
```

Product (pname, price, cid) Company (cid, cname, city)

Universal quantifiers ∀

Q: Find all companies that make only products with price < 100!

Using NOT EXISTS:

```
SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *
FROM Product P
WHERE C.cid = P.cid
and P.price >= 100)
```

Product (pname, price, cid) Company (cid, cname, city)

Universal quantifiers ∀

Q: Find all companies that make only products with price < 100!

Using ALL:

```
SELECT DISTINCT C.cname
FROM Company C
WHERE 100 > ALL ( SELECT price
FROM Product P
WHERE P.cid = C.cid)
```

Question for Database Fans & Friends

▶ How can we unnest the *universal quantifier* query ?

Queries that must be nested

- ▶ A query Q is monotone if:
 - Whenever we add tuples to one or more of the tables...
 - ... the answer to the query cannot contain fewer tuples
- ▶ Fact: all unnested queries are monotone
 - Proof: using the "nested for loops" semantics
- Fact: Query with universal quantifier is not monotone
 - Add one tuple violating the condition. Then not "all"...
- Consequence: we cannot unnest a query with a universal quantifier
- Same argument holds for queries with negation

The drinkers-bars-beers example

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Challenge: write these in SQL

Find drinkers that frequent some bar that serves some beer they like.

x:
$$\exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$$

Find drinkers that frequent only bars that serves some beer they like.

x:
$$\forall y$$
. Frequents(x, y) \Rightarrow ($\exists z$. Serves(y,z) \land Likes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

x:
$$\exists y. Frequents(x, y) \land \forall z. (Serves(y,z) \Rightarrow Likes(x,z))$$

Find drinkers that frequent only bars that serves only beer they like.

x:
$$\forall y$$
. Frequents(x, y) $\Rightarrow \forall z$.(Serves(y,z) \Rightarrow Likes(x,z))