Introduction to Database Systems
CSE 444

Lecture 2: SQL

Announcements

» Project 1 & Hw 1 are posted on class website
Project 1 (SQL) due in two weeks
Homework 1 (E/R models etc) due in three weeks
Remember: time goes by very fast! Start early!

» On the course website you will find
Recommended readings from the book
PDF of lecture notes (“morning of class)

» Other

Outline

» Data in SQL

» Simple Queries in SQL (6.1)

» Queries with more than one relation (6.2)
» Subqueries (6.3)

Structured Query Language (SQL)

» Data Definition Language (DDL)
Create/alter/delete tables and their attributes

Following lectures...

» Data Manipulation Language (DML)
Query one or more tables — discussed next !
Insert/delete/modify tuples in tables

Tables in SQL

Attribute namis/
Product /Key

Table name

— PName‘/ Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo |$29.99 Gadgets GizmoWorks
SingleTouch |$149.99 Photography | Canon

|—> MultiTouch |$203.99 Household | Hitachi

Tuple / row Attribute—T

Data Types in SQL

» Atomic types
Character strings: CHAR(20), VARCHAR(50)
Can be of fixed or variable length
Numbers: INT, BIGINT, SMALLINT, FLOAT
Others: MONEY, DATETIME, ...

» Record (aka tuple)
Has atomic attributes

» Table (aka relation)

A set of tuples Book Sec. 2.3.2

Simple SQL Query

SELECT *
FROM Product

WHERE category='Gadgets'

Selection

Product

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo | $29.99 Gadgets GizmoWorks
SingleTouch | $149.99 Photography | Canon
MultiTouch $203.99 Household Hitachi
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo | $29.99 Gadgets GizmoWorks

Simple SQL Query

Product

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo | $29.99 Gadgets GizmoWorks
SingleTouch | $149.99 Photography | Canon
MultiTouch $203.99 Household Hitachi

SELECT pName, price, manufacturer
FROM Product
WHERE price > 100

g

PName Price Manufacturer
Select SingleTouch | $149.99 Canon
election MultiTouch $203.99 Hitachi

& Projection

Details

» SQL is case insensitive
SELECT = Select = select
Product = product
but 'Seattle' # 'seattle’ (in general)

» Constants must use single quotes
‘abc' - yes
"abc" - no

Eliminating Duplicates

Product
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks Set vs. .Bag
PowerGizmo | $29.99 Gadgets GizmoWorks semantics
SingleTouch | $149.99 Photography | Canon
MultiTouch $203.99 Household Hitachi
Category
SELECT category j> Sadgets
Gadgets
FROM Product Photography
Household
Category
SELECT DISTINCT category j> Gadgets
FROM Product Photography
Household

Ordering the Results

SELECT pName, price, manufacturer
FROM Product
WHERE category='Gadgets'
and price > 10
ORDER BY price, pName

Ties In price attribute broken by pname attribute
Ordering is ascending by default. Descending:

... ORDER BY price, pname DESC

Product PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT DISTINCT category
FROM Product
ORDER BY category

SELECT category
FROM Product
ORDER BY pName

SELECT DISTINCT category
FROM Product
ORDER BY pName

)

)
)

()

Product PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi
Category
SELECT DISTINCT category S
FROM Product > Household
ORDER BY category Photography
Catego
SELECT category Gadseg
FROM Product : >
Household
ORDER BY pName S
Photography

SELECT DISTINCT category

FROM Product > Svyntax error*
ORDER BY pName Y

* Error actually happens during "semantic" analysis of query.

Keys and Foreign Keys

Key\

Foreign
Product _ _— key
PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo | $29.99 Gadgets GizmoWorks
SingleTouch |$149.99 | Photography | Canon
MultiTouch $203.99 Household Hitachi
Company
CName StockPrice | Country
GizmoWorks | 25 USA
Canon 65 Japan
Hitachi 15 Japan

Joins

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all products under $200 manufactured in Japan;
return their names and prices!

SELECT pName, price _

FROM Product, Company Join b/w

WHERE (' manufacturer=cName) «— Product ana
and country="Japan' Company
and price <= 200

Joins

Product Company
PName Price 1}Category Manufacturer CName StockPrice | Country
Gizmo $19.99 Gadgets GizmoWorks 7 GizmoWorks | 25 USA
Powergizmo| | $29.99 Gadgets GizmoWorks / Canon 65 Japan
SingleTouch|| $149.99 Photography | Canon / Hitachi 15 Japan
MultiTouch $203.99 Household Hitachi
SELECT pName, price
FROM Product, Company
PName Price
WHERE manufacturer=cName j> T — oy
and country='Japan’
and price <= 200

Tuple Variables

Person (pName, address, works_for)
Company (cName, address

SELECT DISTINCT pName, address

FROM Person, Company
WHERE works for = cName

which address?

SELECT DISTINCT Person.pName, Company.address

Y

FROM Person, Company

WHERE Person.works for = Company.cName

SELECT DISTINCT X.pName, Y.address

U

FROM Person as X, Company as Y
WHERE X.works for = Y.cName

"as" is optional

In Class

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all Chinese companies that manufacture
products in the “Toy’ category!

SELECT cName
FROM
WHERE

In Class

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all Chinese companies that manufacture
products in the “Toy’ category!

SELECT DISTINCT cName
FROM Product P, Company
WHERE country = 'China’

and P.category = "Toy'

and P.manufacturer = cName

In Class

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all Chinese companies that manufacture
products both in the “Toy’ and ‘Electronic’ categories.

SELECT DISTINCT cName
FROM
WHERE

In Class

Product (pName, price, category, manufacturer)

Company (cName, stockPrice, country)

Q: Find all Chinese companies that manufacture
products both in the “Toy’ and ‘Electronic’ categories.

SELECT DISTINCT cName

FROM

Product P1, Product P2, Company

WHERE country = 'China’

and
and
and
and

P1.category = "Toy'
P2.category = 'Electronic’
P1.manufacturer = cName
P2.manufacturer = cName

Meaning (Semantics) of SQL Queries

SELECT a,, a,, ..., a,
FROM R, asx;, R,asx,, ..., R, as x,
WHERE Conditions

Conceptual evaluation strategy (nested for loops):

Answer = {}
for x, in R, do
for x, in R, do

~ for X, Iin R, do
if Conditions
then Answer = Answer U {(a,,...,a,)}

return Answer

Using the Formal Semantics

What do these queries compute?

SELECT DISTINCT R.a
FROM R,S
WHERE R.a=S.a

SELECT DISTINCT R.a
FROM R,S, T
WHERE R.a=S.a

or R.a=T.a

-

—

R(a), S(a), T(a)

Returns RN S

fS#oand T #9
thenreturns RN (SUT)
else returns @

Joins Introduce Duplicates

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all Chinese companies that manufacture
some product in the ‘Gadgets’ category!

SELECT country

FROM Product, Company

WHERE manufacturer = cName
and category = 'Gadgets'

Joins Introduce Duplicates

Product Company
PName Price Category Manufacturer CName StockPrice | Country
Gizmo $19.99 Gadgets GizmoWorks 7 GizmoWorks | 25 USA
Powergizmo | $29.99 Gadgets GizmoWorks / Canon 65 Japan
SingleTouch | $149.99 Photography | Canon / Hitachi 15 Japan
MultiTouch $203.99 Household Hitachi

SELECT country

t
FROM Product, Company j> S:,JAn ry
WHERE manufacturer = cName USA
and category = 'Gadgets'

Remember to use DISTINCT

Subqueries

» A subquery is a SQL query nested inside a larger query
» Such inner-outer queries are called nested queries

» A subquery may occur in:
A SELECT clause
A FROM clause
A WHERE clause

» Rule of thumb: avoid writing nested queries when
possible; keep in mind that sometimes it’s impossible

1. Subqueries in SELECT

Product (pname, price, cid)
Company (cid, cname, city)

Q: For each product return the city where it is manufactured!

SELECT P.pname, (SELECT C.city
FROM Company C
WHERE C.cid = P.cid)
FROM Product P

What happens if the subquery returns more than one city ?
Runtime error

4

1. Subqueries in SELECT

Product (pname, price, cid)
Company (cid, cname, city)

Q: For each product return the city where it is manufactured!

SELECT P.pname, (SELECT C.city
FROM Company C

WHERE C.cid = P.cid)
FROM Product P

"unnesting the query” @ Whenever possible,

SELECT P.pname, C.city don't use nested queries

FROM Product P, Company C
WHERE C.cid = P.cid

1. Subqueries in SELECT

Product (pname, price, cid)
Company (cid, cname, city)

Q. Compute the number of products made by each company!

SELECT C.cname, (SELECTcount (*)
FROM Product P
WHERE P.cid = C.cid)
FROM Company C

Better: we can unnest by using a GROUP BY (next lecture)

2. Subqueries in FROM

Product (pname, price, cid)
Company (cid, cname, city)

Q: Find all products whose prices is > 20 and < 30!

SELECT X.pname
FROM (SELECT *
FROM ProductasP

WHERE price >20) as X
WHERE X.price < 30

unnesting @

SELECT pname
FROM Product

WHERE price > 20 and price < 30

=
A
=

3. Subqueries in WH]

Product (pname, price, cid)

Company (cid, cname, city) WS € Ul

Q: Find all companies that make some products with price < 100!

Using EXISTS:

SELECT DISTINCT C.cname
FROM Company C
WHERE EXISTS (SELECT *
FROM Product P
WHERE C.cid = P.cid
and P.price < 100)

=
A
=

3. Subqueries in WH]

Product (pname, price, cid)

Company (cid, cname, city) WS € Ul

Q: Find all companies that make some products with price < 100!
Using IN:

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid
FROM Product P
WHERE P.price < 100)

=
A
=

3. Subqueries in WH]

Product (pname, price, cid)

Company (cid, cname, city) WS € Ul

Q: Find all companies that make some products with price < 100!

Using ANY:

SELECT DISTINCT C.cname

FROM Company C

WHERE 100 > ANY (SELECT price
FROM Product P
WHERE P.cid = C.cid)

=
A
=

3. Subqueries in WH]

Product (pname, price, cid)

Company (cid, cname, city) WS € Ul

Q: Find all companies that make some products with price < 100!

Now, let's unnest:

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid

and P.price <100

Existential quantifiers are easy ! ©

=
A
=

3. Subqueries in WH]

Product (pname, price, cid)

| | ifiers V
Company (cid, cname, city) Universal guantiiiers

Q: Find all companies that make only products with price < 100!

Same as.

Q: Find all companies for which all products have price < 100!

Universal quantifiers are more complicated ! ®

(]

(]

3. Subqueries in WHER]

1. Find the other companies: i.e. they have some product = 100!

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid
FROM Product P
WHERE P.price >= 100)

2. Find all companies s.t. all their products have price < 100!

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid NOT IN (SELECT P.cid
FROM Product P
WHERE P.price >= 100)

=
A
=

3. Subqueries in WH]

Product (pname, price, cid)

| | ifiers V
Company (cid, cname, city) Universal guantiiiers

Q: Find all companies that make only products with price < 100!

Using NOT EXISTS:

SELECT DISTINCT C.cname
FROM Company C
WHERE NOT EXISTS (SELECT *
FROM Product P
WHERE C.cid = P.cid
and P.price >= 100)

=
A
=

3. Subqueries in WH]

Product (pname, price, cid)

| | ifiers V
Company (cid, cname, city) Universal guantiiiers

Q: Find all companies that make only products with price < 100!

Using ALL:

SELECT DISTINCT C.cname

FROM Company C

WHERE 100 >ALL (SELECT price
FROM Product P
WHERE P.cid = C.cid)

Question for Database Fans & Friends

» How can we unnest the universal quantifier query ?

Queries that must be nested

» A query Q is monotone if:
Whenever we add tuples to one or more of the tables...
... the answer to the query cannot contain fewer tuples

» Fact: all unnested queries are monotone
Proof: using the “nested for loops” semantics

» Fact: Query with universal quantifier is not monotone
Add one tuple violating the condition. Then not "all"...

» Consequence: we cannot unnest a query with a
universal quantifier

» Same argument holds for queries with negation

The drinkers-bars-beers example

Likes(drinker, beer)

Frequents(drinker, bar) Challenge: write these in SQL
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

x: 3dy. dz. Frequents(x, y)aServes(y,z)aLikes(x,z)

Find drinkers that frequent only bars that serves some beer they like.

x: VYy. Frequents(x, y)= (3z. Serves(y,z)aLikes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

x: 3dy. Frequents(x, y)aVz.(Serves(y,z) = Likes(x,z))

Find drinkers that frequent only bars that serves only beer they like.

x: VYy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))

