Introduction to Database Systems CSE 444

Lecture 5: E/R Diagrams

Outline

- Announcements
 - Anyone still not registered??
- ► E/R diagrams
 - Sec. 4.1- 4.4 [Old edition: Chapter 2]
- From E/R diagrams to relations
 - Sec. 4.5 and 4.6 [Old edition: Sec. 3.2 and 3.3]

Database Design

Why do we need it?

- Need a way to model real world entities in terms of relations
- Not easy to go from real-world entities to a database schema

Consider issues such as:

- What entities to model
- How entities are related
- What constraints exist in the domain
- How to achieve good designs

Several formalisms exists

We discuss E/R diagrams

Database Design Process

Conceptual Schema Design

Conceptual Model: Patient Doctor **Relational Model:** plus FD's (FD = Functional Dependency) Normalization: Eliminates anomalies

Entity / Relationship Diagrams

Objects — entities

Classes — entity sets

Product

entity set

Attributes are like in ODL (ODL = Object Definition Language)

A relationship may

have attributes too!

All entities in the same entity set have the same attributes

Relationships: like in ODL except

Association between 2 or more entities

- first class citizens (not associated with classes)
- not necessarily binary

Keys in E/R Diagrams

Every entity set must have a key

What is a Relationship?

- A mathematical definition:
 - ▶ if A, B are sets, then a relationship R is a subset of A × B
- ► A={1,2,3}, B={a,b,c,d},
 - $A \times B = \{(1,a),(1,b),\ldots,(3,d)\}$
 - Arr R = {(1,a), (1,c), (3,b)}

makes is a subset of Product × Company:

Multiplicity of E/R Relations

one-one:

many-one

many-many

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Key Constraints in Multi-way Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store

Key Constraints in Multi-way Relationships

Q: What does the arrow mean?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product

Key Constraints in Multi-way Relationships

Q: How do we say that every person shops at at most one store?

A: Cannot. This is the best approximation. (Why only approximation?)

Converting Multi-way Relationships to Binary

Design Principles

What's wrong?

Moral: be faithful to the specifications of the app!

Design Principles

18

Design Principles

Moral: don't complicate life more than necessary!

From E/R Diagrams to Relational Schema

- ▶ Entity set → relation
- ▶ Relationship → relation

Entity Set to Relation

Product(name, category, price)

Name	Category	Price
Gizmo	Gadgets	\$19.99

Relationships to Relations

Watch out for attribute name conflicts

Makes(product-name, product-category, company-name, year)

ProductName	ProductCategory	CompanyName	startYear
Gizmo	Gadgets	GizmoWorks	1963

Foreign keys

Relationships to Relations (with constraints)

Only keep **Product** keys as primary key

Better solution: get rid of **Makes**, modify **Product**:

prodName	Category	Price	startYear	CompanyName
Gizmo	Gadgets	\$19.99	1963	GizmoWorks

Multi-way Relationships to Relations

Purchase(prodName, storeName, ssn)

Modeling Subclasses

- Some objects in a class may be special
 - Define a new class
 - ▶ Better: define a *subclass*

So --- we define subclasses in E/R

Subclasses

Subclasses to Relations

Product

<u>Name</u>	Price	Category
Gizmo	99	gadget
Camera	49	photo
Toy	39	gadget

Software Product

<u>Name</u>	platforms
Gizmo	unix

Educational Product

<u>Name</u>	ageGroup
Gizmo	todler
Toy	retired

E/R Inheritance

Modeling Union Types With Subclasses

FurniturePiece

Person

Company

Say: each piece of furniture is owned either by a person, or by a company

Modeling Union Types with Subclasses

Solution 1: acceptable, but imperfect (why?)

30

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Constraints in E/R Diagrams

- ▶ Finding constraints is part of the modeling process.
- Commonly used constraints:
 - Keys: social security number uniquely identifies a person.
 - Single-value constraints: a person can have only one father.
 - Referential integrity constraints: if you work for a company, it must exist in the database.
 - Other constraints: peoples' ages are between 0 and 150.

Keys in E/R Diagrams

Single Value Constraints

V. S.

Referential Integrity Constraints

Each product made by at most one company. Some products made by no company

Each product made by *exactly* one company.

Other Constraints

What does this mean?

Weak Entity Sets

Entity sets are weak when their key comes from classes to which they're related

Handling Weak Entity Sets

No need to represent policy separately