SECTION 3

CSE 444
January 20 th, 2011

Overview

- SQL un-nesting example
- E/R Diagrams
- Translation from English or table schema to E/R
- Translation E/R to table schema
- Functional Dependencies
- Boyce Codd Normal Form
- Examples

Find persons that frequent some bar that serves some drink they like

-- How can we unnest this?
select F.person
from Frequents F
where exists (select *
from Serves S
where S.bar = F.bar and
exists (select *
from Likes L
where L.person = F.person and S.drink = L.drink))

Find persons that frequent some bar that serves some drink they like
 -- unnested version

select F.person
from Frequents F, Likes L, Serves S
where F.person = L.person and
F.bar = S.bar and
L.drink = S.drink

English to E/R Diagram

- Attributes

- Professors have: ssn, age, rank, specialty
- Projects have: pid, sponsor, start-date, end-date, budget

English to E/R Diagram

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

English to E/R Diagram

- Each project is worked on by one or more professors
- Professors can work on multiple projects

Convert to tables

- Professor(ssn, age, rank, specialty)
- Project(pid, sponsor, start_date, end_date, budget)
- Work_in(ssn, pid)
- Manages(ssn, pid)

\qquad
\qquad

\qquad
\square

[^0]
\qquad

\qquad

x^{2}

.
\qquad

－

\square

Abstract

$$
>
$$

$$
>
$$

Convert to tables
 ，
 正

－Project（pid，sponsor，start＿date，end＿date，budget，ssn）
\square

\qquad

```
\square
```

```
\square
```

－Professor（ssn，age，rank，specialty）
－Work＿in（ssn，pid）
\qquad
－Work＿in（ssn，pid）
别
－

[^1]

```
ne
```


Convert to tables

CREATE TABLE Work_In (
CREATE TABLE Work_In (
ssn INT REFERENCES Professor(ssn),
ssn INT REFERENCES Professor(ssn),
pid INT REFERENCES Project(pid),
pid INT REFERENCES Project(pid),
PRIMARY KEY (ssn, pid)
PRIMARY KEY (ssn, pid)
) ;

CREATE TABLE Professor (
CREATE TABLE Professor (
ssn INT PRIMARY KEY,
ssn INT PRIMARY KEY,
age INT,
age INT,
urank VARCHAR(30),
urank VARCHAR(30),
specialty VARCHAR(30)
specialty VARCHAR(30)
) ;

CREATE TABLE Project (
pid INT PRIMARY KEY,
start_date DATE,
budget FLOAT,

- Professor(ssn, age, rank, specialty)
- Project(pid, sponsor, start_date, end_date, budget, ssn)
- Work_in(ssn, pid)
- Work_in(ssn, pid)
CREATE TABLE Project (
sponser INT,
start_date DATE,
end_date DATE,
ssn INT REFERENCES Professor (ssn)

Data Anomalies

- Redundancy is Bad, why?
- Redundancy
- Update
- Delete

Functional Dependencies

R	A	B	C	D	E	F
	$a 1$	$b 1$	$c 1$	$d 1$	$e 1$	$f 1$
	$a 1$	$b 1$	$c 2$	$d 1$	$e 2$	$f 3$
	$a 2$	$b 1$	$c 2$	$d 3$	$e 2$	$f 3$
	$a 3$	$b 2$	$c 3$	$d 4$	$e 3$	$f 2$
	$a 2$	$b 1$	$c 3$	$d 3$	$e 4$	$f 4$
$a 4$	$b 1$	$c 1$	$d 5$	$e 1$	$f 1$	

- Dependencies for this relation:
- $A \rightarrow B$
- $A \rightarrow D$
- B,C \rightarrow E,F
- Do they all hold in this instance of the relation R ?
- How would you go by finding these in an unknown table?
- Functional dependencies are specified by the database programmer based on the intended meaning of the attributes.

Keys

- Keys
- Superkey
- Key

Garcia-Molina, problem 3.3.2 (i)

Consider a relation $\mathrm{S}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ with FDs
$A \rightarrow B, B \rightarrow C$, and $B \rightarrow D$.
a. Give the nontrivial FDs that follow from the given FDs. Restrict to 1 attr on right side.
b. What are all the keys of S?
c. What are the superkeys that aren't keys?
a) $\mathrm{A} \rightarrow \mathrm{C}, \mathrm{A} \rightarrow \mathrm{D}$
b) Only $\{A\}$
c) Any set of two or more keys that includes A

Boyce-Codd Normal Form (BCNF)

- What is it?
- Why do it?

BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: $X \neq X^{+} \neq$[all attributes]
if (not found) then " R is in BCNF"
let $Y=X^{+}-X$
let $Z=[$ all attributes $]-X^{+}$
decompose R into $R 1(X \cup Y)$ and $R 2(X \cup Z)$ continue to decompose recursively R 1 and R 2

A table R(A,B,C,D,E) : Example 1

Consider the following FDs:

- CD $\rightarrow \mathrm{E} \quad$ BAD
- $D \rightarrow B \quad B A D$
- $\bar{A} \rightarrow C D$

D is not a superkey

A is a superkey

NOTE: A SET OF ATTRIBUTES X IS A SUPERKEY IF X+ = ABCDE

A table R(A,B,C,D,E) : Example 1

Consider the following FDs:
$\begin{array}{ll}\text { - } C D \rightarrow E & B A D \\ \text { - } D \rightarrow B & B A D\end{array}$
$\begin{array}{ll}\text { - } C D \rightarrow E & B A D \\ \text { - } D \rightarrow B & B A D\end{array}$

- $\overline{\mathrm{A}} \rightarrow \mathrm{CD}$

R(A,B,C,D,E) [CD+ = BCDE \neq ABCDE]

R2(B,C,D,E)

$[D+=B D \neq B C D E]$$\quad$| R3(A,C,D) |
| :---: |
| $[B C N F]$ |

R4(B,D)
R5(C,D,E) [BCNF]

NOTE: A SET OF ATTRIBUTES X IS A SUPERKEY IF X+ = ABCDE

2 more BCNF decompositions

R(A, B, C, D)
$C \rightarrow D, C \rightarrow A, B \rightarrow C$

S(A, B, C, D, E)
$\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{DE} \rightarrow \mathrm{C}, \mathrm{B} \rightarrow \mathrm{D}$

A table R(A,B,C,D) : Example 2

Consider the following
FDs:

- $\mathrm{C} \rightarrow \mathrm{D}, \mathrm{C}+=\mathrm{AD}$ BAD
- $C \rightarrow A, C+=A D \quad B A D$
R(A,B,C,D,)
$[C+=A D \neq A B C D]$
- $B \rightarrow C, B+=A B C D$

NOTE: A SET OF ATTRIBUTES X IS A SUPERKEY IF X+ = ABCD

A table S(A,B,C,D,E) : Example 3

$1^{\text {st }}$ Solution:
Consider the following FDs:

S(A,B,C,D,E)
$[A B+=A B C D \neq$
ABCDE]

\author{

- $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AB}+=\mathrm{ABCD}$ BAD
 - $D E \rightarrow C, D E+=C D E$ BAD
 - $\mathrm{B} \rightarrow \mathrm{D}, \mathrm{B}+=\mathrm{BD} \quad \mathrm{BAD}$
}

$$
\begin{gathered}
\mathrm{S} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \\
{[\mathrm{B}+=\mathrm{BD} \neq \mathrm{ABCD}]}
\end{gathered}
$$

S3(A,B,E) [BCNF]

NOTE: A SET OF ATTRIBUTES X IS A SUPERKEY IF X+ = ABCDE

A table S(A,B,C,D,E) : Example 3

$2^{\text {nd }}$ Solution:
Consider the following FDs:

```
S(A,B,C,D,E) [DE+ = CDE \(\neq\) ABCDE]
```

- $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AB}+=\mathrm{ABCD} D^{B A D}$
- $D E \rightarrow C, D E+=C D E$ BAD
- $B \rightarrow D, B+=B D \quad B A D$

S3(C,D,E) [BCNF]

S5(A,B,E) [BCNF]

NOTE: A SET OF ATTRIBUTES X IS A SUPERKEY IF X+ = ABCDE

A table S(A,B,C,D,E) : Example 3

$3^{\text {rd }}$ Solution:
Consider the following FDs:

- $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AB}+=\mathrm{ABCD} \quad \mathrm{BAD}$
- $\mathrm{DE} \rightarrow \mathrm{C}, \mathrm{DE}+=\mathrm{CDE} \quad \mathrm{BAD}$
- $B \rightarrow D, B+=B D \quad B A D$

NOTE: A SET OF ATTRIBUTES X IS A SUPERKEY IF X+ = ABCDE

Notes

- Project 1 due tomorrow January $21^{\text {st }}, 5$ pm
- Office hours 10:30-12 in 006
- Homework 1 is out, due January $28^{\text {th }}$
- Course wiki is up
- https://cubist.cs.washington.edu/wiki/index.php/CSE444
- Good source of practice problems and explanations

[^0]:

[^1]: 都

