SECTION 3

CSE 444 January 20th, 2011

Overview

- SQL un-nesting example
- E/R Diagrams
 - Translation from English or table schema to E/R
 - Translation E/R to table schema
- Functional Dependencies
- Boyce Codd Normal Form
 - Examples

Find persons that frequent some bar that serves some drink they like -- How can we unnest this? select F.person from Frequents F where exists (select * from Serves S where S.bar = F.bar and exists (select * from Likes L where L.person = F.person and S.drink = L.drink)

Find persons that frequent some bar that serves some drink they like

-- unnested version

select F.person

```
from Frequents F, Likes L, Serves S
```

```
where F.person = L.person and
```

```
F.bar = S.bar and
```

L.drink = S.drink

English to E/R Diagram

- Attributes
 - Professors have: <u>ssn</u>, age, rank, specialty
 - Projects have: pid, sponsor, start-date, end-date, budget

English to E/R Diagram

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

English to E/R Diagram

- Each project is worked on by one or more professors
- Professors can work on multiple projects

Convert to tables

• Professor(<u>ssn</u>, age, rank, specialty)

- Project(<u>pid</u>, sponsor, start_date, end_date, budget)
- Work_in(<u>ssn</u>, <u>pid</u>)
- Manages(<u>ssn</u>, <u>pid</u>)

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke

Convert to tables

• Professor(<u>ssn</u>, age, rank, specialty)

- Project(<u>pid</u>, sponsor, start_date, end_date, budget, <u>ssn</u>)
- Work_in(<u>ssn</u>, <u>pid</u>)

Convert to tables

Data Anomalies

- Redundancy is Bad, why?
- Redundancy
- Update
- Delete

Functional Dependencies

R	Α	В	С	D	E	F
	a1	b1	c1	d1	e1	f1
	a1	b1	c2	d1	e2	f3
	a2	b1	c2	d3	e2	f3
	a3	b2	c3	d4	e3	f2
	a2	b1	c3	d3	e4	f4
	a4	b1	c1	d5	e1	f1

 Dependencies for this relation:

•
$$A \rightarrow B$$

•
$$A \rightarrow D$$

•
$$B,C \rightarrow E,F$$

 Do they all hold in this instance of the relation R?

- How would you go by finding these in an unknown table?
- Functional dependencies are specified by the database programmer based on the intended meaning of the attributes.

Keys

- - Superkey
 - Key

Garcia-Molina, problem 3.3.2 (i)

Consider a relation S(A,B,C,D) with FDs $A \rightarrow B, B \rightarrow C$, and $B \rightarrow D$.

- a. Give the nontrivial FDs that follow from the given FDs. Restrict to 1 attr on right side.
- b. What are all the keys of S?
- c. What are the superkeys that aren't keys?
- a) A -> C, A -> D
- b) Only {A}
- c) Any set of two or more keys that includes A

Boyce-Codd Normal Form (BCNF)

What is it?

• Why do it?

BCNF Decomposition Algorithm

BCNF_Decompose(R)

```
find X s.t.: X \neq X^+ \neq [all attributes]
```

if (not found) then "R is in BCNF"

<u>**let</u>** $Y = X^+ - X$ <u>**let</u></u> Z = [all attributes] - X^+ decompose R into R1(X \cup Y) and R2(X \cup Z) continue to decompose recursively R1 and R2</u></u>**

A table R(A,B,C,D,E) : Example 1

A table R(A,B,C,D,E) : Example 1

2 more BCNF decompositions

 $\begin{array}{c} \mathsf{R}(\mathsf{A},\,\mathsf{B},\,\mathsf{C},\,\mathsf{D})\\ \mathsf{C}\to\mathsf{D},\,\mathsf{C}\to\mathsf{A},\,\mathsf{B}\to\mathsf{C} \end{array}$

S(A, B, C, D, E) $AB \rightarrow C, DE \rightarrow C, B \rightarrow D$

A table R(A,B,C,D) : Example 2

A table S(A,B,C,D,E) : Example 3

A table S(A,B,C,D,E) : Example 3

A table S(A,B,C,D,E) : Example 3

Notes

- Project 1 due tomorrow January 21st, 5pm
- Office hours 10:30-12 in 006

Homework 1 is out, due January 28th

- Course wiki is up
 - https://cubist.cs.washington.edu/wiki/index.php/CSE444
 - Good source of practice problems and explanations