SECTION 5

Logging and conflict serializabllity
February 3, 2010

Reminders

- Project 2 due tomorrow, Friday (2/4) at 11pm
- Homework 2 due next Friday (2/11) at 11pm

- Midterm Wednesday (2/9) in class

Notes on Project 2

- How do we handle concurrent transactions?
- What is Multi Version Concurrency Control (MVCC)?

- How can we test concurrent transactions?

Today

- Logging and recovery review
- Identifying conflict-serializable schedules

Why use logs to recover from crashes?

Helps satisfy 2 of the ACID constraints:

- Atomicity (all actions of txn happen or none happen)
- How does log-based recovery keep TXen atomic?
- How is this done in an undo log?
- In a redo log?

- Durability (if a txn commits, its effects persist)
- How does logging ensure that TXen persist?

Buffer Manager Policies

- Steal or No-Steal

- Do we allow updates from uncommitted transactions to overwrite
most recent committed values on disk?

- If YES, then ‘Steal’
- [f NO, then ‘No-Steal’

- Force or No-Force
- Do we force all updates of a transaction to disk before the
transaction commits?
- If YES, then ‘Force’
- If NO, then ‘No-Force’

Buffer Manager Policies

- What are the performance tradeoffs of force/no-force and
steal/no-steal?

[NoStea

- What logging policy is needed for each combination of
force/no-force and steal/no-steal? (ex. Force + Steal)

| |Nostea

Our undo log notation

- <START T>
- Transaction T has begun

- <COMMIT T>
- T has committed

- <ABORT T>
- T has aborted

- <T, X, v> - Update record
- T has updated element X, and its old value was v

. °
An undo logging problem

Given this undo log, when can each data item be output to
disk?

+A:after 2 1 [<START T1
< >

- B: after 3 > [<T1 A a>

- C: after 5, before 12 3 |<T1, B, b>

. D- after 7 4 |<START T2>
5 |<T2,C, c>

- E: after 8, before 12 6 |<START T3>

- F: after 10 / |<T3,D,d>
8 |<T2, E, e>

+ G: aiter 11 9 |<START T4>
10 |<T4, F, f>
11 [<T3, G, g>
12 |<COMMIT T2>

Undo logging problem, continued

After writing these log entries, the DBMS crashes. What
does it do when it restarts?

- Scan for transactions to
undo: T1, T3, T4

- G, F, D, B, Areverted
(in that order)

- <ABORT> written for
T1, T3, T4

<START T1>
<T1, A, a>
<T1, B, b>
<START T2>
<T2, C, c>
<START T3>
<T3, D, d>
<T2, E, e>
<START T4>
<T4, F, f>
<T3, G, g>
<COMMIT T2>

OO |INO|OA|RIWIN|F

[EEN
o

=
=

=
N

What If it was a redo log?

Now, <T, X, v> means X's new value is V!
... SO how when can we output each item?
- C, E: after 12
- Others: never
(given log available)

<START T1>
<T1, A, a>
<T1, B, b>
<START T2>
<T2, C, c>
<START T3>
<T3, D, d>
<T2, E, e>
<START T4>
<T4, F, f>
<T3, G, g>
<COMMIT T2>

OO |INO|OA|RIWIN|F

[EEN
o

=
=

=
N

Redo log problem, continued

How do we recover from this redo log?

- Scan for transactions to
redo: only T2
- C and E rewritten

<START T1>
<T1, A, a>
<T1, B, b>
<START T2>
<T2, C, c>
<START T3>
<T3, D, d>
<T2, E, e>
<START T4>
<T4, F, f>
<T3, G, g>
<COMMIT T2>

OO |INO|OA|RIWIN|F

[EEN
o

=
=

=
N

Why add (non-quiescent) checkpoints?

. S
Checkpoints look different in undo and

redo logs

Which is the undo log and which is the redo log?

1 |[<START T1> 1 | <START T1>

2 <T1, A, a> 2 <T1, A, a>

3 |<T1, B, b> 3 |<T1, B, b>

4 | <START T2> 4 |<START T2>

5 |<T2,C,c> 5 |<T2,C,c>

6 | <START T3> 6 | <START T3>

7 |<T3,D,d> 7 |<T3,D,d>

8 | <COMMIT T1> 8 | <COMMIT T1>

9 <START CKPT (T2, 9 <START CKPT (T2,
T3)> T3)>

10 |<T2, E, e> 10 | <T2, E, e>

11 | <START T4> 11 | <START T4>

12 | <T4, F, f> 12 [<T4, F, >

13 | <T3, G, g> 13 | <T3, G, g>

14 | <COMMIT T3> 14 [<COMMIT T3>

15 | <END CKPT> 15 | <COMMIT T2>

16 | <COMMIT T2> 16 [<END CKPT>

17 | <COMMIT T4> 17 | <COMMIT T4>

Undo log recovery with checkpoints

The DBMS crashes with this undo log.

What do we do to recover?
- Which log entries are read?
From end to 9: <START CKPT>

- Which transactions are undone?
None: all have committed

- Which data do we change?
None: no transactions to undo

<START T1>
<T1, A, a>
<T1, B, b>
<START T2>
<T2, C, c>
<START T3>
<T3, D, d>
<COMMIT T1>
<START CKPT (T2, T3)>
<T2, E, e>
<START T4>
<T4, F, f>
<T3, G, g>
<COMMIT T3>
<COMMIT T2>
<END CKPT>
<COMMIT T4>

OO |IN|OO|O |]|WIN|F

=Y
o

'_\
'_\

=
N

=Y
w

[EEY
SN

Y
(63}

=Y
(e}

'_\
\‘

Redo log recovery with checkpoints

This similar log is a REDO log. (why?)
How do we recover this one?

1 <START T1>
- Which log entries are read? 2 <E /; E>
3 <T1, B, b>
From end to 9: <START CKPT> 4 | <START 72>
Then from 4: <START T2> down to end 5 |<T2 C. c>
- Which transactions are redone? 6 | <START T3>
7 <T3, D, d>
12,73, T4 8 |<comMMmIT T1>
- Which data do we change? o |<START CKPT (T2,
T3)>

C<ce,DECdESCe FE,G&g

10 | <T2, E, e>

11 | <START T4>
12 | <T4, F, f>

13 | <T3, G, g>

14 [<COMMIT T3>
15 | <END CKPT>
16 | <COMMIT T2>
17 | <COMMIT T4>

Next

- Identifying conflict-serializable schedules

Schedules and conflicts

For some transaction T;:
- 1,(X) means “T, reads the data element X"
- W,(X) means “T, writes the data element X"

Two actions from T,, T, conflict iff one or both is a write,
and they act on the same element

= W1(X); ry(X) or r,(X); wy(X)
* 11(X); Wy(X) M '
* Wy (X);W,(X) or wy(X); wy(X) xecung T

before T2
Two actions both from T, also conflict gives different
results from
* 11(X); wy(Y) executing T2

before T1

Example 1: find all conflicts

> W3(A) «—
> 1,(A) -
>w,(B)*
> 1,(B)
> W3(C)<
> 1,(C) «

The precedence graph

- Recall: T, must precede T, iff an action from T, conflicts
with a later action from T,
- Ignore conflicting actions from the same transaction

- Precedence graph shows the precedence relations

Example 1: precedence graph

A

B

> W5(A)

> 11(A)
> W,(B)

> 1,(B)

> W;(C)

> 1,(C)

IS It conflict serializable?

- YES: If no cycles in the precedence graph

- Any transaction order which follows the
precedences shown is an equivalent serial
schedule

- NO: if there are cycles in the precedence graph

Example 1: conflict serializable?

> W3(A)
A >rl(A) B C
w,(B) | ' |
> 1,(B)
Lo (1) () (3
)rz(C) T ‘
C A

>

No cycles: YES, conflict serializable
Only serial equivalent schedule: T,
Tl1 T2

Example 1: serial equivalent

w3(A) w3(A)
r(A) — W;(C)
w,(B) ri(A)
ro(B) w,(B)
w3(C) r,(B)
r,(C) r,(C)

Only serial equivalent schedule: T,, T4, T,

Example 2: find non-self conflicts

r(A)
—s (A)
r(B)<
r,(B)
_, 13(A)
r,(B)-
= w; (A)
W, (B)-

Example 2: precedence graph

r(A)
—sT5(A)

ri(B) <
A r,(B)
—>r3(A)

r4(B) <
=w;, (A)

W,(B)e-

B

@%@ ONO

Example 2: conflict serializable?

ri(A) N
—s(A) |
w (L) (3 (4
A —
ro(B) B
—>r3(A) B T - ‘
r,(B) <
=w,(A) Cycle between T, and T,:
W, (B NO, not conflict serializable
2 <€

