
SECTION 5 
Logging and conflict serializability 

February 3, 2010 

1 



Reminders 

• Project 2 due tomorrow, Friday (2/4) at 11pm 

• Homework 2 due next Friday (2/11) at 11pm 

 

• Midterm Wednesday (2/9) in class 

2 



Notes on Project 2 

• How do we handle concurrent transactions? 

 

• What is Multi Version Concurrency Control (MVCC)? 

 

• How can we test concurrent transactions? 

3 



Today 

 

• Logging and recovery review 

• Identifying conflict-serializable schedules 

4 



Why use logs to recover from crashes? 

Helps satisfy 2 of the ACID constraints: 

• Atomicity (all actions of txn happen or none happen) 

• How does log-based recovery keep TXen atomic? 

• How is this done in an undo log? 

• In a redo log? 

• Durability (if a txn commits, its effects persist) 

• How does logging ensure that TXen persist? 

 

5 



Buffer Manager Policies 

• Steal or No-Steal 

• Do we allow updates from uncommitted transactions to overwrite 

most recent committed values on disk? 

• If YES, then „Steal‟ 

• If NO, then „No-Steal‟ 

• Force or No-Force 

• Do we force all updates of a transaction to disk before the 

transaction commits? 

• If YES, then „Force‟ 

• If NO, then „No-Force‟ 

6 



Buffer Manager Policies  

 

• What are the performance tradeoffs of force/no-force and 

steal/no-steal? 

 

 

 

• What logging policy is needed for each combination of 

force/no-force and steal/no-steal? (ex. Force + Steal) 

 

7 

No-Steal Steal 

No-Force Fastest 

Force Slowest 

No-Steal Steal 

No-Force Redo Undo/Redo 

Force Undo 



Our undo log notation 

• <START T>  
• Transaction T has begun 

• <COMMIT T>  
• T has committed 

• <ABORT T> 
• T has aborted 

• <T, X, v> - Update record 
• T has updated element X, and its old value was v 

 

8 



An undo logging problem 

Given this undo log, when can each data item be output to 

disk? 

• A: after 2 

• B: after 3 

• C: after 5, before 12 

• D: after 7 

• E: after 8, before 12 

• F: after 10 

• G: after 11 

 

9 

1 <START T1> 

2 <T1, A, a> 

3 <T1, B, b> 

4 <START T2> 

5 <T2, C, c> 

6 <START T3> 

7 <T3, D, d> 

8 <T2, E, e> 

9 <START T4> 

10 <T4, F, f> 

11 <T3, G, g>  

12 <COMMIT T2> 



Undo logging problem, continued 

After writing these log entries, the DBMS crashes.  What 

does it do when it restarts? 

•  Scan for transactions to 

 undo: T1, T3, T4 

•  G, F, D, B, A reverted 

 (in that order) 

•  <ABORT> written for 

 T1, T3, T4 

 

 

 

 

10 

1 <START T1> 

2 <T1, A, a> 

3 <T1, B, b> 

4 <START T2> 

5 <T2, C, c> 

6 <START T3> 

7 <T3, D, d> 

8 <T2, E, e> 

9 <START T4> 

10 <T4, F, f> 

11 <T3, G, g>  

12 <COMMIT T2> 



What if it was a redo log? 

Now, <T, X, v> means X‟s new value is v! 

 … so now when can we output each item? 

• C, E: after 12 

• Others: never 

 (given log available) 

11 

1 <START T1> 

2 <T1, A, a> 

3 <T1, B, b> 

4 <START T2> 

5 <T2, C, c> 

6 <START T3> 

7 <T3, D, d> 

8 <T2, E, e> 

9 <START T4> 

10 <T4, F, f> 

11 <T3, G, g>  

12 <COMMIT T2> 



Redo log problem, continued 

How do we recover from this redo log? 

 

• Scan for transactions to 

 redo: only T2 

• C and E rewritten 

 

 

12 

1 <START T1> 

2 <T1, A, a> 

3 <T1, B, b> 

4 <START T2> 

5 <T2, C, c> 

6 <START T3> 

7 <T3, D, d> 

8 <T2, E, e> 

9 <START T4> 

10 <T4, F, f> 

11 <T3, G, g>  

12 <COMMIT T2> 



Why add (non-quiescent) checkpoints? 

 

13 



Checkpoints look different in undo and 

redo logs 
Which is the undo log and which is the redo log? 

14 

1 <START T1> 

2 <T1, A, a> 

3 <T1, B, b> 

4 <START T2> 

5 <T2, C, c> 

6 <START T3> 

7 <T3, D, d> 

8 <COMMIT T1> 

9 
<START CKPT (T2, 

T3)> 

10 <T2, E, e> 

11 <START T4> 

12 <T4, F, f> 

13 <T3, G, g> 

14 <COMMIT T3> 

15 <COMMIT T2> 

16 <END CKPT> 

17 <COMMIT T4> 

1 <START T1> 

2 <T1, A, a> 

3 <T1, B, b> 

4 <START T2> 

5 <T2, C, c> 

6 <START T3> 

7 <T3, D, d> 

8 <COMMIT T1> 

9 
<START CKPT (T2, 

T3)> 

10 <T2, E, e> 

11 <START T4> 

12 <T4, F, f> 

13 <T3, G, g> 

14 <COMMIT T3> 

15 <END CKPT> 

16 <COMMIT T2> 

17 <COMMIT T4> 



Undo log recovery with checkpoints 

The DBMS crashes with this undo log. 

What do we do to recover? 

• Which log entries are read? 

From end to 9: <START CKPT> 

• Which transactions are undone? 

None; all have committed 

• Which data do we change? 

None; no transactions to undo 

15 

1 <START T1> 

2 <T1, A, a> 

3 <T1, B, b> 

4 <START T2> 

5 <T2, C, c> 

6 <START T3> 

7 <T3, D, d> 

8 <COMMIT T1> 

9 <START CKPT (T2, T3)> 

10 <T2, E, e> 

11 <START T4> 

12 <T4, F, f> 

13 <T3, G, g> 

14 <COMMIT T3> 

15 <COMMIT T2> 

16 <END CKPT> 

17 <COMMIT T4> 



Redo log recovery with checkpoints 

This similar log is a REDO log. (why?) 

How do we recover this one? 

• Which log entries are read? 

From end to 9: <START CKPT> 

Then from 4: <START T2> down to end 

• Which transactions are redone? 

T2, T3, T4 

• Which data do we change? 

C  c, D  d, E  e, F  f, G  g 

16 

1 <START T1> 

2 <T1, A, a> 

3 <T1, B, b> 

4 <START T2> 

5 <T2, C, c> 

6 <START T3> 

7 <T3, D, d> 

8 <COMMIT T1> 

9 
<START CKPT (T2, 

T3)> 

10 <T2, E, e> 

11 <START T4> 

12 <T4, F, f> 

13 <T3, G, g> 

14 <COMMIT T3> 

15 <END CKPT> 

16 <COMMIT T2> 

17 <COMMIT T4> 



Next 

• Identifying conflict-serializable schedules 

17 



Schedules and conflicts 

For some transaction T1: 

• r1(X) means “T1 reads the data element X” 

• w1(X) means “T1 writes the data element X” 

Two actions from T1, T2 conflict iff one or both is a write, 

and they act on the same element 

• w1(X); r2(X)   or  r2(X); w1(X) 

• r1(X); w2(X)   or  w2(X); r1(X) 

• w1(X);w2(X)  or  w2(X); w1(X)  

Two actions both from T1 also conflict 

• r1(X); w1(Y)  

18 

Executing T1 

before T2 

gives different 

results from 

executing T2 

before T1 



Example 1: find all conflicts 

w3(A) 

r1(A) 

w1(B) 

r2(B) 

w3(C) 

r2(C) 

19 



The precedence graph 

• Recall: T1 must precede T2 iff an action from T1 conflicts 

with a later action from T2 

• Ignore conflicting actions from the same transaction 

• Precedence graph shows the precedence relations  

 

20 



Example 1: precedence graph 

w3(A) 

r1(A) 

w1(B) 

r2(B) 

w3(C) 

r2(C) 

21 

1 2 3 

A 

C 

B 

A 

B C 



Is it conflict serializable? 

• YES: if no cycles in the precedence graph 

• Any transaction order which follows the 

precedences shown is an equivalent serial 

schedule 

• NO: if there are cycles in the precedence graph 

22 



Example 1: conflict serializable? 

w3(A) 

r1(A) 

w1(B) 

r2(B) 

w3(C) 

r2(C) 

23 

1 2 3 

A 

C 

B 

A 

B C 

No cycles: YES, conflict serializable 

Only serial equivalent schedule: T3, 

T1, T2 



Example 1: serial equivalent 

w3(A) 

r1(A) 

w1(B) 

r2(B) 

 

r2(C) 

24 

Only serial equivalent schedule: T3, T1, T2 

w3(A) 

w3(C) 

r1(A) 

w1(B) 

r2(B) 

r2(C) 

w3(C) w3(C) 



Example 2: find non-self conflicts 

r1(A) 

r2(A) 

r1(B) 

r2(B) 

r3(A) 

r4(B) 

w1(A) 

w2(B) 

25 



Example 2: precedence graph 

r1(A) 

r2(A) 

r1(B) 

r2(B) 

r3(A) 

r4(B) 

w1(A) 

w2(B) 

26 

A 

B 

1 2 3 

B 

B 
4 

A 

A 



Example 2: conflict serializable? 

r1(A) 

r2(A) 

r1(B) 

r2(B) 

r3(A) 

r4(B) 

w1(A) 

w2(B) 

27 

A 

B 

1 2 3 

B 

B 
4 

A 

A 

Cycle between T1 and T2: 

NO, not conflict serializable 


