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CSE451 Introduction to Operating Systems
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Gary Kimura
Lecture #1

March 26, 2001
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Today

• Class details
• CSE451 educational objectives
• A quick look at what is an operating system

• The class web page should be up and running soon
– Class information
– Lecture notes
– Project and homework assignments
– Helpful hints and other pointers
– Email discussion
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Class details

• Instructor: 
Gary Kimura (GaryKi@cs.washington.edu)
Office hours: Sieg 419 MWF 1:00 to 2:00 or by 

appointment
Email is the best way to contact me

• TAs: 
Jochen Jaeger (JJ@cs.washington.edu)
Office hours: Sieg 226b Tuesday 1:00 to 2:00
Adam Prewett (Prewett@cs.washington.edu)
Office Hours: TBD

• Please ask questions during class and make the lectures 
interactive
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Grading (subject to adjustment)

• 20% Homework
– Approximately 5 to 6 assignments
– One week from when the assignment is handed out to 

when it it due
• 40% Exams

– Two midterms (April 20 and May 11)
– Final

• 40% Projects 
– Tentatively 4 projects
– At least two weeks to finish each project
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Tentative class outline

• OS Overview (chapters 1, 2, and 3)
• Process Management (chapters 4, 5, 6, and 7)
• Storage Management (chapters 8, 9, 10, and 11)
• I/O Systems (chapters 12, 13, and 14)
• Accounting, Protection, and Security (chapters 19 and 20)
• Distributed Systems (chapters 15 and 16)
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Your job for week #1

• Readings in Silberschatz
– Chapter 1 (Monday lecture), 
– Chapter 2  (Wednesday lecture)
– Chapter 3 (Friday lecture)

• Homework #1
– Out: Today Monday March 26, 2001
– Due: Next Monday April 2, 2001
– Silberschatz questions 1.4, 2.5 (justify your answers), 

2.9, and 3.6
• Thursday Project #1 will be handed out
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CSE 451 Education objectives

• Two views of an OS
– The OS user’s (i.e., application programmers) view
– The OS implementer’s view

• In this class we will learn:
– What are the parts of an O.S.
– How is the O.S. and each sub-part structured
– What are the important interfaces
– What are the important policies
– What algorithms are typically used

• We will do this through reading, lectures, and a project.
• You will need to keep up with all three of these.
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What is an Operating System?

• The average computer user has trouble understanding this 
question 

• Naively it is “All the code that you didn’t write”
• The code that manages physical (hardware) resources 
• Provides users (application programmers) with “logical” 

well-behaved environment
• O.S. defines a set of logical resources (objects) and a set of 

well-defined operations on those objects (i.e., an 
interface to use those objects)

• Provides mechanisms and policies for the control of 
objects/resources

• Controls how different users and programs interact
• Without an O.S. there would be a lot more work to write 

and run programs
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What resources need to be managed?

• The parts and pieces of the computer itself
• The CPU (one or more units that as a rule can only do one 

thing at a time)
• Primary memory (fast but volatile storage)
• Secondary memory devices (disks, tapes, etc)
• Networks
• Input devices (keyboard, mouse)
• Various I/O devices (printers, display, cameras, speakers)
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What’s in an OS?

Machine Dependent 
Services

Interrupts, Cache, Physical Memory, TLB, Hardware Devices

Generic I/O
File System

Memory Management

Process Management

Virtual MemoryNetworking

Naming Access Control

Windowing & graphics

Windowing & Gfx

Machine 
Independent 
Services

Application 
Services

SYSTEM CALL API

MD API
Device Drivers

ShellsSystem Utils

Quake Sql Server

Logical OS Structure
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The OS is Everywhere

main(int argc, char **argv)
{ int fd = open(argv[1], O_RDONLY);

if (fd < 0) {
fprintf(stderr, “Failed to open\n”);
exit(-1);

}
while (1) {

if (read(fd, &c, sizeof c) != 1)
exit(-1);

putc( c )
}

}   

• Edit
• Compile
• Run/Create Process
• Invoke main
• Open file

– Check access
– Cache
– Read character

• Write character
• Terminate process on EOF 

or Error

% cc main.c

% ./a.out /tmp/foo.bar
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Major issues in Operating Systems
• Structure – how is an operating system organized?
• Sharing – how are resources shared among users
• Naming – how are resources named (by users or programs)
• Protection – how is one user/program protected from 

another
• Security – how to restrict the flow of information
• Performance – why is it so slow?
• Reliability and fault tolerance – when something goes 

wrong
• Extensibility – how do we add new features?
• Communication – how and with whom can we 

communicate (exchange information)
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Major issues in OS (2)

• Concurrency – how are parallel activities created and 
controlled?

• Scale  and growth – what happens as demands or resources 
increase?

• Persistence – how to make data last longer than programs
• Compatibility – can we ever do anything new?
• Distribution – Accessing the world of information
• Accounting – who pays the bills, and how do we control 

resource usage?
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A brief history of operating systems

• “In the beginning”, the OS was just code to which you 
linked your program, loaded the whole thing into memory, 
and ran your program;  basically, just a run-time library

• Simple batch systems were first real operating systems:
– O.S. was stored in part of primary memory
– It loaded a single job (from card reader) into memory
– Ran that job (printed its output, etc.)
– Loaded the next job...
– Control cards in the input file told the O.S. what to do

• Spooling and buffering allowed jobs to be read ahead of 
time onto tape/disk or into memory.
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Multiprogramming

• Multiprogramming systems provided increased utilization
– Keeps multiple runnable jobs loaded in memory
– Overlaps I/O processing of a job with computes of 

another
– Benefits from I/O devices that can operate 

asynchronously
– Requires the use of interrupts and DMA
– Tries to optimize throughput at the cost of response 

time
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Timesharing

• Timesharing supported interactive use of 
– Each user feels as if he/she has the entire machine (at 

least late at night!)
– Timesharing tries to optimize response time at the cost 

of throughput
– Based on time-slicing -- dividing CPU equally among 

the users 
– Permitted active viewing, editing, debugging, 

participation of users in the execution process
• MIT Multics system (mid-late 1960s) was first large 

timesharing system
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Distributed Operating Systems

• Distributed systems facilitate use of geographically 
distributed resources
– Machines connected by wires

• Supports communication between parts of a job or 
different jobs
– Interprocess communication

• Sharing of distributed resources, hardware and software
– Resource utilization and access

• Permits some parallelism, but speedup is not the issue
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Parallel Operating Systems

• Support parallel applications wishing to get speedup of 
computationally complex tasks

• Needs basic primitives for dividing one task into multiple 
parallel activities

• Supports efficient communication between those activities
• Supports synchronization of activities to coordinate 

sharing of information
• It’s common now to use networks of high-performance 

PCs/workstations as a parallel computer
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Embedded Operating Systems

• The decreased cost of processing makes computers 
ubiquitous.  Each “embedded” application needs its own 
OS or control software:
– Cell phones
– PDAs (Palm Pilot, etc.)
– “Network terminals” (internet interfaces)

• In the future, your house will have 100s of these things in 
it (if it doesn’t already)
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Future Operating Systems

• Who knows that future is going to bring?
• An OS for a ubiquitous computing environment?
• Radically different programming and usage paradigms will 

necessitate changes to the OS 
• Without a crystal ball it’s hard to say where this will end
• This class will stress some of the fundamental parts that 

will probably always be needed in any basic OS (but there 
are no guarantees)
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Next time

• What features in the Hardware do an OS need?


