
March 26, 2001

CSE 451 Introduction to Operating Systems 1

1

CSE451 Introduction to Operating Systems
Spring 2001

Gary Kimura
Lecture #1

March 26, 2001

2

Today

• Class details
• CSE451 educational objectives
• A quick look at what is an operating system

• The class web page should be up and running soon
– Class information
– Lecture notes
– Project and homework assignments
– Helpful hints and other pointers
– Email discussion

March 26, 2001

CSE 451 Introduction to Operating Systems 2

3

Class details

• Instructor:
Gary Kimura (GaryKi@cs.washington.edu)
Office hours: Sieg 419 MWF 1:00 to 2:00 or by

appointment
Email is the best way to contact me

• TAs:
Jochen Jaeger (JJ@cs.washington.edu)
Office hours: Sieg 226b Tuesday 1:00 to 2:00
Adam Prewett (Prewett@cs.washington.edu)
Office Hours: TBD

• Please ask questions during class and make the lectures
interactive

4

Grading (subject to adjustment)

• 20% Homework
– Approximately 5 to 6 assignments
– One week from when the assignment is handed out to

when it it due
• 40% Exams

– Two midterms (April 20 and May 11)
– Final

• 40% Projects
– Tentatively 4 projects
– At least two weeks to finish each project

March 26, 2001

CSE 451 Introduction to Operating Systems 3

5

Tentative class outline

• OS Overview (chapters 1, 2, and 3)
• Process Management (chapters 4, 5, 6, and 7)
• Storage Management (chapters 8, 9, 10, and 11)
• I/O Systems (chapters 12, 13, and 14)
• Accounting, Protection, and Security (chapters 19 and 20)
• Distributed Systems (chapters 15 and 16)

6

Your job for week #1

• Readings in Silberschatz
– Chapter 1 (Monday lecture),
– Chapter 2 (Wednesday lecture)
– Chapter 3 (Friday lecture)

• Homework #1
– Out: Today Monday March 26, 2001
– Due: Next Monday April 2, 2001
– Silberschatz questions 1.4, 2.5 (justify your answers),

2.9, and 3.6
• Thursday Project #1 will be handed out

March 26, 2001

CSE 451 Introduction to Operating Systems 4

7

CSE 451 Education objectives

• Two views of an OS
– The OS user’s (i.e., application programmers) view
– The OS implementer’s view

• In this class we will learn:
– What are the parts of an O.S.
– How is the O.S. and each sub-part structured
– What are the important interfaces
– What are the important policies
– What algorithms are typically used

• We will do this through reading, lectures, and a project.
• You will need to keep up with all three of these.

8

What is an Operating System?

• The average computer user has trouble understanding this
question

• Naively it is “All the code that you didn’t write”
• The code that manages physical (hardware) resources
• Provides users (application programmers) with “logical”

well-behaved environment
• O.S. defines a set of logical resources (objects) and a set of

well-defined operations on those objects (i.e., an
interface to use those objects)

• Provides mechanisms and policies for the control of
objects/resources

• Controls how different users and programs interact
• Without an O.S. there would be a lot more work to write

and run programs

March 26, 2001

CSE 451 Introduction to Operating Systems 5

9

What resources need to be managed?

• The parts and pieces of the computer itself
• The CPU (one or more units that as a rule can only do one

thing at a time)
• Primary memory (fast but volatile storage)
• Secondary memory devices (disks, tapes, etc)
• Networks
• Input devices (keyboard, mouse)
• Various I/O devices (printers, display, cameras, speakers)

10

What’s in an OS?

Machine Dependent
Services

Interrupts, Cache, Physical Memory, TLB, Hardware Devices

Generic I/O
File System

Memory Management

Process Management

Virtual MemoryNetworking

Naming Access Control

Windowing & graphics

Windowing & Gfx

Machine
Independent
Services

Application
Services

SYSTEM CALL API

MD API
Device Drivers

ShellsSystem Utils

Quake Sql Server

Logical OS Structure

March 26, 2001

CSE 451 Introduction to Operating Systems 6

11

The OS is Everywhere

main(int argc, char **argv)
{ int fd = open(argv[1], O_RDONLY);

if (fd < 0) {
fprintf(stderr, “Failed to open\n”);
exit(-1);

}
while (1) {

if (read(fd, &c, sizeof c) != 1)
exit(-1);

putc(c)
}

}

• Edit
• Compile
• Run/Create Process
• Invoke main
• Open file

– Check access
– Cache
– Read character

• Write character
• Terminate process on EOF

or Error

% cc main.c

% ./a.out /tmp/foo.bar

12

Major issues in Operating Systems
• Structure – how is an operating system organized?
• Sharing – how are resources shared among users
• Naming – how are resources named (by users or programs)
• Protection – how is one user/program protected from

another
• Security – how to restrict the flow of information
• Performance – why is it so slow?
• Reliability and fault tolerance – when something goes

wrong
• Extensibility – how do we add new features?
• Communication – how and with whom can we

communicate (exchange information)

March 26, 2001

CSE 451 Introduction to Operating Systems 7

13

Major issues in OS (2)

• Concurrency – how are parallel activities created and
controlled?

• Scale and growth – what happens as demands or resources
increase?

• Persistence – how to make data last longer than programs
• Compatibility – can we ever do anything new?
• Distribution – Accessing the world of information
• Accounting – who pays the bills, and how do we control

resource usage?

14

A brief history of operating systems

• “In the beginning”, the OS was just code to which you
linked your program, loaded the whole thing into memory,
and ran your program; basically, just a run-time library

• Simple batch systems were first real operating systems:
– O.S. was stored in part of primary memory
– It loaded a single job (from card reader) into memory
– Ran that job (printed its output, etc.)
– Loaded the next job...
– Control cards in the input file told the O.S. what to do

• Spooling and buffering allowed jobs to be read ahead of
time onto tape/disk or into memory.

March 26, 2001

CSE 451 Introduction to Operating Systems 8

15

Multiprogramming

• Multiprogramming systems provided increased utilization
– Keeps multiple runnable jobs loaded in memory
– Overlaps I/O processing of a job with computes of

another
– Benefits from I/O devices that can operate

asynchronously
– Requires the use of interrupts and DMA
– Tries to optimize throughput at the cost of response

time

16

Timesharing

• Timesharing supported interactive use of
– Each user feels as if he/she has the entire machine (at

least late at night!)
– Timesharing tries to optimize response time at the cost

of throughput
– Based on time-slicing -- dividing CPU equally among

the users
– Permitted active viewing, editing, debugging,

participation of users in the execution process
• MIT Multics system (mid-late 1960s) was first large

timesharing system

March 26, 2001

CSE 451 Introduction to Operating Systems 9

17

Distributed Operating Systems

• Distributed systems facilitate use of geographically
distributed resources
– Machines connected by wires

• Supports communication between parts of a job or
different jobs
– Interprocess communication

• Sharing of distributed resources, hardware and software
– Resource utilization and access

• Permits some parallelism, but speedup is not the issue

18

Parallel Operating Systems

• Support parallel applications wishing to get speedup of
computationally complex tasks

• Needs basic primitives for dividing one task into multiple
parallel activities

• Supports efficient communication between those activities
• Supports synchronization of activities to coordinate

sharing of information
• It’s common now to use networks of high-performance

PCs/workstations as a parallel computer

March 26, 2001

CSE 451 Introduction to Operating Systems 10

19

Embedded Operating Systems

• The decreased cost of processing makes computers
ubiquitous. Each “embedded” application needs its own
OS or control software:
– Cell phones
– PDAs (Palm Pilot, etc.)
– “Network terminals” (internet interfaces)

• In the future, your house will have 100s of these things in
it (if it doesn’t already)

20

Future Operating Systems

• Who knows that future is going to bring?
• An OS for a ubiquitous computing environment?
• Radically different programming and usage paradigms will

necessitate changes to the OS
• Without a crystal ball it’s hard to say where this will end
• This class will stress some of the fundamental parts that

will probably always be needed in any basic OS (but there
are no guarantees)

March 26, 2001

CSE 451 Introduction to Operating Systems 11

21

Next time

• What features in the Hardware do an OS need?

