
April 16, 2001

CSE 451 Introduction to Operating Systems 1

CSE451 Deadlocks
Spring 2001

Gary Kimura

Lecture #10

April 16, 2001

Your job this week

• Readings in Silberschatz

– Chapter 7

• No homework this week instead there is a midterm exam
on Friday

April 16, 2001

CSE 451 Introduction to Operating Systems 2

But First a Brief Word About Monitors
(Section 6.7)

• The term monitorused in this context is not to be confused
with monitor modeused to describe a hardware protection

• A synchronization monitor is a programming language
construct that supports controlled access to shared data

• Essentially it is an ADT that encapsulates

– Some shared data structures

– Procedures/methods to access the data

– Synchronization build into the procedures (using
condition variables)

Today

• All these various synchronization methods are great for
keeping concurrent processes/threads from mangling each
other

• However they do introduce another problem

• Synchronization does not stop them from starving each
other

• And that’s the topic of deadlocks

• We need to look at what deadlocks are and how to deal
with them

April 16, 2001

CSE 451 Introduction to Operating Systems 3

Deadlock

• Deadlockis a problem that can exist when a group of
processes compete for access to fixed resources.

• Def: deadlock exists among a set of processes if every
process is waiting for an event that can be caused only by
another process in the set.

• Example: two processes share 2 resources that they must
request(before using) and release(after using). Request
either gives access or causes the proc. to block until the
resource is available.

Proc1: Proc2:
request tape request printer
request printer request tape
… <use them> … <use them>
release printer release tape
release tape release printer

Four Conditions for Deadlock

• Deadlock can exist if and only if 4 conditions hold
simultaneously:

1. mutual exclusion:at least one process must be held in a
non-sharable mode.

2. hold and wait:there must be a process holding one
resource and waiting for another.

3. No preemption:resources cannot be preempted.
4. circular wait:there must exist a set of processes

[p1, p2, …, pn] such that p1 is waiting for p2, p2 for p3,
and so on….

April 16, 2001

CSE 451 Introduction to Operating Systems 4

Resource Allocation Graph

• Deadlock can be described through a resource allocation
graph.

• The RAG consists of a set of vertices P={P1,P2,…,Pn} of
processes and R={R1,R2,…,Rm} of resources.

• A directed edge from a processes to a resource, Pi->Rj,
implies that Pi has requested Rj.

• A directed edge from a resource to a process, Rj->Pi, implies
that Rj has been allocated by Pi.

• If the graph has no cycles, deadlock cannot exist. If the graph
has a cycle, deadlock may exist.

Resource Allocation Graph Example

.

.

.

.

.
.
.
.

.

.

.

. . . .
R1 R3 R3

R4

R2

P3P2P1

R1

P1 P2 P3

P4

R2 R4

There are two cycles here: P1-R1-P2-R3-P3-R2-P1
and P2-R3-P3-R2-P2, and there is deadlock.

Same cycles, but no deadlock.

April 16, 2001

CSE 451 Introduction to Operating Systems 5

Possible Approaches

• Deadlock Prevention: ensure that at least 1 of the
necessary conditions cannot exist.

– Mutual exclusion: make resources shareable (isn’t
really possible for some resources)

– hold and wait: guarantee that a process cannot hold a
resource when it requests another, or, make processes
request all needed resources at once, or, make it release
all resources before requesting a new set

– circular wait: impose an ordering (numbering) on the
resources and request them in order

More Possible Approaches

• Deadlock Avoidance
– General idea: provide information in advance about what

resources will be needed by processes to guarantee that
deadlock will not exist.

• E.g., define a sequence of processes <P1,P2,..Pn> as safeif for
each Pi, the resources that Pi can still request can be satisfied by
the currently available resources plus the resources held by all Pj,
j < i.
– This avoids circularities.
– When a process requests a resource, the system grants or

forces it to wait, depending on whether this would be an
unsafe state.

April 16, 2001

CSE 451 Introduction to Operating Systems 6

Example:

• Processes p0, p1, and p2 compete for 12 tape drives
max need current usage could ask for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain
• Current state is safe because a safe sequence exists: <p1,p0,p2>

p1 can complete with current resources
p0 can complete with current+p1
p2 can complete with current +p1+p0

• If p2 requests 1 drive, then it must wait because that state would
be unsafe.

The Banker’s Algorithm

• Banker’s algorithm decides whether to grant a resource request.
Define data structures.
int n; // # of processes
int m; // # of resources

int available[m]; // # of avail resources of type i

int max[n][m]; // max demand of each Pi for each Rj

int allocation[n][m]; // current allocation of resource Rj

// to Pi

int need[n][m]; // max # of resources that Pi may

// still request of Rj

let request[i] be a vector of the # of instances of resource Rj that
Process Pi wants.

April 16, 2001

CSE 451 Introduction to Operating Systems 7

The Basic Banker’s Algorithm
if (request[i] > need[i]) {

// error, asked for too much

}

if (request[i] > available[i]) {

// wait until resources become available

}

// resources are available to satisfy request, assume

// that we satisfy the request, we would then have

available = available – request[i];

Allocation[i] = allocation[i] + request[i];

need[i] = need[i] – request[i];

// now check if this would leave us in a safe state

// if yes then grant the request otherwise the process

// must wait

Safety Check in Banker’s Algorithm
int work[m] = available; // to accumulate resources

boolean finish[n] = {FALSE,…}; // non finished yet

do {

find an i such that (finish[i]==FALSE) && (need[i]<work)

// process i can complete all of its requests

finish[i] = TRUE; // done with this process

work = work + allocation[i]; // assume this process gave

// all its allocation back

} until (no such i exists);

if (all finish entries are TRUE) {

// system is safe. i.e., we found a sequence a processes

// that will lead to everyone finishing

}

April 16, 2001

CSE 451 Introduction to Operating Systems 8

Deadlock Detection

• If there is neither deadlock prevention nor avoidance, then
deadlock may occur.

• In this case, we must have:

– an algorithm that determines whether a deadlock has
occurred

– an algorithm to recover from the deadlock

• This is doable, but it’s costly

Deadlock Detection Algorithm
int work[m] = available; // to accumulate resources
boolean finish[n] = {FALSE,…}; // non finished yet

for (i = 0; i < n; i++) {
if (allocation[i] is zero) { finish[i] = TRUE; }

}

do {
find an i such that (finish[i]==FALSE && request[i]<work)

// process I can finish with currently available resources

finish[i] = TRUE; // done with this process

work = work + allocation[i]; // assume this process gave
// all its allocation back

} until (no such i exists);

if (finish[i] == FALSE for some i) {
// System is deadlocked with Pi in the deadlock cycle

}

April 16, 2001

CSE 451 Introduction to Operating Systems 9

Deadlock Detection

• Deadlock detection algorithm is expensive. How often we
invoke it depends on:

– how often or likely is deadlock

– how many processes are likely to be affected when
deadlock occurs

Deadlock Recovers

• Once a deadlock is detected, there are 2 choices:
1. abort all deadlocked processes (which will cost in the

repeated computations necessary)
2. abort 1 process at a time until cycle is eliminated

(which requires re-running the detection algorithm
after each abort)

• Or, could do process preemption: release resources until
system can continue. Issues:
– selecting the victim (could be clever based on R’s

allocated)
– rollback (must rollback the victim to a previous state)
– starvation (must not always pick same victim)

• These are common database inspired methods, within an
interactive OS none are really that acceptable

April 16, 2001

CSE 451 Introduction to Operating Systems 10

Real Life Deadlock Prevention

• Fewer resources (locks) means less deadlock potential, but
also less potential concurrency. So there is a trade off here

• For really simple applications acquiring all the resources
up front is fairly common, but not always practical.

• Programmers most often use common sense in the ordering
of resources acquisition and releases
– Resource levels is one area that helps development

• In complicated software systems resource levels are not
practical. (e.g., memory management and the file system
often recursively call each other), and deadlock prevention
is far more a matter of fine tuning the locks and
understanding the exact scenario in which locks are
acquired

Important Points to Remember About
Deadlocks

• When a deadlock does happen, by definition, it will not go
away; therefore debugging deadlocks is somewhat simpler
because all the processes are stuck and can’t squirm out of
the way.

• Identifying a deadlock is sometimes easier then
understanding how to prevent the deadlock

• No magic bullet here, but a lot of common sense

April 16, 2001

CSE 451 Introduction to Operating Systems 11

Next Time

• Review on Wednesday and
• Midterm on Friday

– Closed book
– Closed notes
– Closed neighbor
– Open mind
– Roughly 10 questions covering

• Hardware Support
• OS Architecture
• Processes and Threads
• Scheduling Algorithms
• Synchronization, and
• The Linux Projects

