April 16, 2001

CSE451 Deadlocks
Spring 2001

Gary Kimura
Lecture #10
April 16, 2001

— Chapter 7

on Friday

Your job this week

» Readings in Silberschatz

* No homework this week instead there is a midterm exam

CSE 451 Introduction to Operating Systems

April 16, 2001

But First a Brief Word About Monitors
(Section 6.7)

The termmonitorused in this context is not to be confused
with monitor modeused to describe a hardware protection

A synchronization monitor is a programming language
construct that supports controlled access to shared data

Essentially it is an ADT that encapsulates
— Some shared data structures
— Procedures/methods to access the data

— Synchronization build into the procedures (using
condition variabley

Today

All these various synchronization methods are great for
keeping concurrent processes/threads from mangling each
other

However they do introduce another problem

Synchronization does not stop them from starving each
other

And that’s the topic of deadlocks

We need to look at what deadlocks are and how to deal
with them

CSE 451 Introduction to Operating Systems

April 16, 2001

Deadlock

» Deadlockis a problem that can exist when a group of
processes compete for access to fixed resources.

» Def: deadlock exists among a set of processes if every
process is waiting for an event that can be caused only by
another process in the set.

» Example: two processes share 2 resources that they must
request(before using) ancelease(after using). Request
either gives access or causes the proc. to block until the
resource is available.

Procl: Proc2:
request tape request printer
request printer request tape
... <use them> ... <use them>
release printer release tape
release tape release printer

Four Conditions for Deadlock

» Deadlock can exist if and only if 4 conditions hold
simultaneously:

1. mutual exclusionat least one process must be held in a
non-sharable mode.

2. hold and waitthere must be a process holding one

resource and waiting for another.

No preemptionresources cannot be preempted.

4. circular waitthere must exist a set of processes
[p1, p2, ..., pn] such that p1 is waiting for p2, p2 for p3,
and so on....

w

CSE 451 Introduction to Operating Systems

April 16, 2001

Resource Allocation Graph

» Deadlock can be described througtesource allocation
graph

« The RAG consists of a set of vertices PB,...,P.} of
processes and R={[R,,...,R} of resources.

« Adirected edge from a processes to a resourceR P
implies that Phas requested,R

« Adirected edge from a resource to a processFRimplies
that R has been allocated by. P

« If the graph has no cycles, deadlock cannot exist. If the graph
has a cycle, deadlock may exist.

Resource Allocation Graph Example

R1 R3 R1 R3

4y p@. it \@

N

R2 . \
R4 R2 b R4

There are two cycles here: P1-R1-P2-R3-P3-R2-P1 P4
and P2-R3-P3-R2-P2, and there is deadlock.

Same cycles, but no deadlock.

CSE 451 Introduction to Operating Systems

April 16, 2001

Possible Approaches

+ Deadlock Prevention: ensure that at least 1 of the
necessary conditions cannot exist.

— Mutual exclusion: make resources shareable (isn’'t
really possible for some resources)

— hold and wait: guarantee that a process cannot hold a
resource when it requests another, or, make processes
request all needed resources at once, or, make it release
all resources before requesting a new set

— circular wait: impose an ordering (numbering) on the
resources and request them in order

14

More Possible Approaches

Deadlock Avoidance
— General idea: provide information in advance about what
resources will be needed by processes to guarantee that
deadlock will not exist.
E.g., define a sequence of processes <P1,P2,..Fsafaifsfor
each Pi, the resources that Pi can still request can be satisfied
the currently available resources plus the resources held by al
] <li.
— This avoids circularities.
— When a process requests a resource, the system grants or
forces it to wait, depending on whether this would be an
unsafe state.

CSE 451 Introduction to Operating Systems

by

April 16, 2001

Example

* Processes p0, p1, and p2 compete for 12 tape drives
max need current usage could ask for

pO 10 5 5
pl 4 2 2
p2 9 2 7

3 drives remain

« Current state is safe because a safe sequence exists: <p1,p0,p2>

pl can complete with current resources
pO can complete with current+pl
p2 can complete with current +p1+p0

» If p2 requests 1 drive, then it must wait because that state wou
be unsafe.

The Banker’s Algorithm

» Banker’s algorithm decides whether to grant a resource reque
Define data structures.

int n; /I # of processes
int m; /I # of resources
int available[m]; // # of avail resources of type i
int max[n][m]; /l max demand of each Pi for each Rj
int allocation[n][m]; // current allocation of resource Rj
/I to Pi
int need[n][m]; /I max # of resources that Pi may

I/ still request of Rj

let request[i] be a vector of the # of instances of resource Rj th
Process Pi wants.

St.

at

CSE 451 Introduction to Operating Systems

April 16, 2001

The Basic Banker’s Algorithm

if (request[i] > need[i]) {
// error, asked for too much

}

if (request][i] > availablel[i]) {
/I wait until resources become available

}

/I resources are available to satisfy request, assume
/I that we satisfy the request, we would then have

available = available — request[i];
Allocation[i] = allocation[i] + request][i];
need[i] = need[i] — request]i];

/I now check if this would leave us in a safe state
/I if yes then grant the request otherwise the process
/I must wait

Safety Check in Banker’s Algorithm

int work[m] = available; // to accumulate resources
boolean finish[n] = {FALSE,...}; // non finished yet

do {
find an i such that (finish[i]==FALSE) && (need[i]<work)

I/l process i can complete all of its requests
finish[i] = TRUE; /I done with this process
work = work + allocation[i]; // assume this process gave
/I all its allocation back
} until (no such i exists);
if (all finish entries are TRUE) {

/l system is safe. i.e., we found a sequence a processes
// that will lead to everyone finishing

CSE 451 Introduction to Operating Systems

April 16, 2001

Deadlock Detection

* If there is neither deadlock prevention nor avoidance, then
deadlock may occur.

* |n this case, we must have:

— an algorithm that determines whether a deadlock has
occurred

— an algorithm to recover from the deadlock
e This is doable, but it's costly

Deadlock Detection Algorithm

int work[m] = available; // to accumulate resources
boolean finish[n] = {FALSE,...}; // non finished yet

for (i=0;i<n;i++) {
if (allocation([i] is zero) { finish[i] = TRUE; }
}

do {
find an i such that (finish[i]==FALSE && request[i]<work)

/I process | can finish with currently available resources
finish[i] = TRUE; /I done with this process
work = work + allocation]i]; // assume this process gave
/I all its allocation back
} until (no such i exists);
if (finish[i] == FALSE for some i) {

/I System is deadlocked with Pi in the deadlock cycle
}

CSE 451 Introduction to Operating Systems

April 16, 2001

Deadlock Detection

» Deadlock detection algorithm is expensive. How often we
invoke it depends on:

— how often or likely is deadlock

— how many processes are likely to be affected when
deadlock occurs

Deadlock Recovers

* Once a deadlock is detected, there are 2 choices:
1. abort all deadlocked processes (which will cost in the
repeated computations necessary)

2. abort 1 process at a time until cycle is eliminated
(which requires re-running the detection algorithm
after each abort)

e Or, could do process preemption: release resources until
system can continue. Issues:

— selecting the victim (could be clever based on R’s
allocated)

— rollback (must rollback the victim to a previous state)

— starvation (must not always pick same victim)

* These are common database inspired methods, within an
interactive OS none are really that acceptable

CSE 451 Introduction to Operating Systems

April 16, 2001

Real Life Deadlock Prevention

Fewer resources (locks) means less deadlock potential, but
also less potential concurrency. So there is a trade off herg

For really simple applications acquiring all the resources
up front is fairly common, but not always practical.

Programmers most often use common sense in the ordering
of resources acquisition and releases

— Resource levels is one area that helps development

In complicated software systems resource levels are not
practical. (e.g., memory management and the file system
often recursively call each other), and deadlock prevention
is far more a matter of fine tuning the locks and
understanding the exact scenario in which locks are
acquired

Important Points to Remember About
Deadlocks

When a deadlock does happen, by definition, it will not go
away; therefore debugging deadlocks is somewhat simpler
because all the processes are stuck and can’t squirm out of
the way.

Identifying a deadlock is sometimes easier then
understanding how to prevent the deadlock

No magic bullet here, but a lot of common sense

CSE 451 Introduction to Operating Systems

10

April 16, 2001

Next Time

* Review on Wednesday and
* Midterm on Friday
— Closed book
— Closed notes
— Closed neighbor
— Open mind
— Roughly 10 questions covering
» Hardware Support
» OS Architecture
» Processes and Threads
» Scheduling Algorithms
» Synchronization, and
* The Linux Projects

CSE 451 Introduction to Operating Systems

11

