
April 23, 2001

CSE 451 Introduction to Operating Systems 1

CSE451 Memory Management Introduction
Spring 2001

Gary Kimura
Lecture #13

April 23, 2001

Today

• Midterm Results
• Memory Management

– Overview
– Virtual and physical address space
– A cursory look at three memory management

techniques

Your job this week

• Readings in Silberschatz
– Chapter 8 and 9

• Homework #4
– Out today Monday April 23, 2001
– Due next Monday April 30, 2001
– Silberschatz questions 8.6, 8.10
– And a third question to be posted on the class web page

Midterm Results

• Average score 30.25 stdev 6.6

15.05.4#86.03.8#4

4.02.8#79.06.3#3

5.04.6#63.02.7#2

5.02.8#53.01.6#1

MaxAverageProblemMaxAverageProblem

April 23, 2001

CSE 451 Introduction to Operating Systems 2

Simple Programs, Simple Memory
• Remember back to simple programs and the memory

model they use.
• They live in a virtual world, a linear address space not

based on physical memory (i.e., reality).

Address Space Introduction

• First memory isn’t all scattered around with little nice
names

• It is a set of sequentially numbered cells (bytes).
• Physical memory is also a set of sequentially numbered

cells (bytes).
• In early systems your virtual world was identical to your

physical world
• Let’s draw a picture to help illustrate the concept

Address space in more Hardware terms

• A logical or virtual address is the memory location
generated by the CPU

• A physical address is the memory location of a cell as seen
by the memory unit

• Need hardware support to quickly and transparently
translate Virtual to Physical

Memory Management Units

• A hardware memory management unit is typically stuck
between the CPU and main memory. So each memory
access maps a Virtual Address to a Physical Address

• Virtual address space is typically larger than physical
memory

• Hardware units are usually biased toward either paging or
segmentation

April 23, 2001

CSE 451 Introduction to Operating Systems 3

Memory Management techniques

• What do we do when the sum of all the virtual memory
doesn’t fit into physical memory?
– Swapping: not everyone is allowed into memory at the

same time
– Segmentation: divide a program into logical units and

allow units to be swapped in and out or memory
– Paging: everyone is allowed only part of their program

into memory at a time
• Paging is real the one in vogue today, but we’ll quickly

look at the other two to better understand the problem

Swapping

• Swapping is where executing programs are temporarily
copied out of memory to a backing store such as a disk
drive.

• This frees up physical memory for other programs to be
swapped in.

• Swapping is similar in concept to a context switch
however it is a lot more expensive.

Segmentation

• Another scheme for resolving virtual to physical addresses.
Each function or program is assigned to a segment

• Hardware support needed
– Segment table: Each entry in the table corresponds to a

segment and contains the physical base and limit of the
segment

– Protection and sharing: Two processes can share
segments.

– Fragmentation: It may not allows be possible to find a
big enough hole in physical memory to load a new
segment.

Paging

• Divide up virtual and physical memory into pages (usually
in the 4KB or 8KB range)

• Hardware support needed
– Page table: map all virtual pages to physical pages.

Page tables can be large.
– TLB (Translation Look-aside Buffer): cache of recently

accessed page table entries.
– Page protection: indicates the state of each logical and

physical page. Is the mapping valid and who has
access to the page

April 23, 2001

CSE 451 Introduction to Operating Systems 4

Logical and physical memory in the paging
model TLB Hardware

Paging (continued)

• Multilevel paging: Used to reduce the amount of memory
needed to store the page table.

• Inverted page tables: Each physical page has a table entry
identifying the process.

• Shared pages: Physical pages can show up in multi page
table entries.
– This allows for sharing executable code pages.
– It also can be used for copy-on-write pages.

Issues (addressed in later lectures)

• Fragmentation: Essentially wasted memory that cannot be
used to store real data
– Internal fragmentation: Where each allocation unit

potentially has a bit of wasted memory .
– External fragmentation: where physical memory is

being divided into various sized holes.
• Which pages or segments should be loaded and/or

removed from physical memory?
• How does the system allocate or grow the physical

memory supporting their virtual address space and how is
that represented in the system?

• Kernel address space has additional issues
– Must all the kernel code and data always be in physical

memory?

April 23, 2001

CSE 451 Introduction to Operating Systems 5

Next Time

• Virtual Memory and a more in-depth look at paging

