
April 25, 2001

CSE 451 Introduction to Operating Systems 1

CSE451 Virtual Memory Paging
Spring 2001

Gary Kimura
Lecture #14

April 25, 2001

Today

• Fragmentation (how we can’t avoid wasting resources)
• Virtual memory and introduce more of the paging concept

and hardware support needed for paging.
• And take a look at how we typically divide up virtual

memory between the OS (i.e., Kernel) and User Programs

A brief side note on fragmentation

• There are essentially two types of fragmentation
– Internal Fragmentation: This is where a block of

memory is being under utilized. For example a process
of size 5000 bytes would need 2 4KB pages of memory.
So the system winds up allocating 8192 bytes of
memory The program really only uses 5000 bytes so
we waste 3092 bytes.

– External Fragmentation: There is where memory has
been broken up into small unallocated pieces whose
sum might make a nice usable piece but because the
pieces are not adjacent in the Virtual Address Space
they cannot be combined.

Paging
• Goals

– make allocation
and swapping
easier

• Make all chunks of
memory the same
size
– call each chunk a

“PAGE”
– example page

sizes are 512
bytes, 1K, 4K,
8K, etc

– pages have been
getting bigger
with time

Page # Offset

Virtual Address

Page
Table
Base
Register

+

+ =>
physical
address

Page Table

Each entry
in the page
table is a
“Page Table
Entry”

April 25, 2001

CSE 451 Introduction to Operating Systems 2

An Example

• Pages are 4096 bytes long
– this says that bottom 12 bits of the VA is the offset

• PTBR contains 32768
– this says that the first page table entry for this process is

at physical memory location 32768
• Virtual address is 5000

– this says “page 2, offset (5000-4096) = 904”
• Physical memory location 32772 contains 8192

– this says that each PTE is 4 bytes
– and that the second page of this process’s address space

can be found at memory location 8192.
• So, we add 904 to 8192 and we get the real data!

What does a PTE contain?

M-bit V-bit Protection bits Page Frame Number

• The Modify bit says whether or not the page has been
written.
– it is updated each time a WRITE to the page occurs.

• The Reference bit says whether or not the page has been
touched
– it is updated each time a READ or a WRITE occurs

• The V bit says whether or not the PTE can be used
– it is checked each time the virtual address is used

• The Protection bits say what operations are allowed on this
page
– READ, WRITE, EXECUTE

• The Page Frame Number says where in memory is the page

R-bit

1 1 1 1-2 about 20

Evaluating Paging
• Easy to allocate memory

– memory comes from a free list of fixed size chunks.
– to find a new page, get anything off the free list.
– external fragmentation not a problem

• easy to swap out pieces of a program
– since all pieces are the same size.
– use valid bit to detect references to swapped pages
– pages are a nice multiple of the disk block size.

• Can still have internal fragmentation
• Table space can become a serious problem

– especially bad with small pages
• eg, with a 32bit address space and 4k size pages,

that’s 220 pages or that many ptes which is a lot!
• Memory reference overhead can be high

– 2 refs for every one

Segmentation and Paging
at the Same Time

• Provide for two levels of mapping
• Use segments to contain logically related things

– code, data, stack
– can vary in size but are generally large.

• Use pages to describe components of the segments
– makes segments easy to manage and can swap memory

between segments.
– need to allocate page table entries only for those pieces

of the segments that have themselves been allocated.
• Segments that are shared can be represented with shared

page tables for the segments themselves.

April 25, 2001

CSE 451 Introduction to Operating Systems 3

An Early Example -- IBM System 370

24 bit virtual address

4 bits 8 bits 12 bits

Segment
Table

Page Table

+

simple bit operation

Real Memory

Lookups
• Each memory reference can be 3

– assuming no fault
• Can exploit locality to improve lookup strategy

– a process is likely to use only a few pages at a time
• Use Translation Lookaside buffer to exploit locality

– a TLB is a fast associative memory that keeps track of
recent translations.

• The hardware searches the TLB on a memory reference
• On a TLB miss, either a hardware or software exception

can occur
– older machines reloaded the TLB in hardware
– newer RISC machines tend to use software loaded

TLBs
• can have any structure you want for the page table
• fast handler computes and goes. Eg, the MIPS.

Hard versus soft page faults

• Hard page faults are those page faults that require issuing a
read from secondary storage.

• Soft page faults are those page faults where the page is
already in main memory however the TLB and/or the PTE
has marked the page as invalid.

– Soft faults are used when Hardware support is not
available to handle TLB misses

– Soft faults can also be used in implement certain page
replacement algorithms. More to come.

A TLB

• A small fully associative cache
• Each entry contains a tag and a

value.
– tags are virtual page numbers
– values are physical page table

entries.
• Problems include

– keeping the TLB consistent with
the PTE in main memory

• valid and ref bits, for example
– keeping TLBs consistent on an

MP.
– quickly loading the TLB on a

miss.
• Hit rates are important.

Tag Value

0xfff1000

0xfff1000

0xa10100

0xbbbb00

0x1111aa11

?

0x12341111

April 25, 2001

CSE 451 Introduction to Operating Systems 4

Selecting a page size

• Small pages give you lots of flexibility but at a high cost.
• Big pages are easy to manage, but not very flexible.
• Issues include

– TLB coverage
• product of page size and # entries

– internal fragmentation
• likely to use less of a big page

– # page faults and prefetch effect
• small pages will force you to fault often

– match to I/O bandwidth
• want one miss to bring in a lot of data since it will

take a long time.

State of maintained by MM

• MM usually maintains a list of physical pages according to
the following attributes (various implementations use
slightly different lists)
– Zeroed pages
– Free pages
– Standby pages
– Modified pages
– Modified No Write pages
– Bad pages

• MM’s goal is to use these pages on these lists to supply
memory for both soft and hard page faults

• MM can have a modified page writer process that goes
around and flushes out dirty pages.

Address Spaces

• In modern systems the virtual address space is usually
divided into two main sections (one for user programs and
another for the OS)

• For example in Windows (not the 64bit version) the lower
2GB is used for the user programs and upper 2GB is
reserved for the OS

• The OS pages are protected and cannot be read while in
user mode

• Each process shares the same upper 2GB of Virtual
address, but each also has a different set of pages for its
user space

• This design has implications on communication between a
user program and the OS, and between user programs

Next Time

• Work through a paging example to understand more of the
issues involved

