April 25, 2001

CSEA451 Virtual Memory Paging
Spring 2001

Gary Kimura
Lecture #14
April 25, 2001

Today

* Fragmentation (how we can't avoid wasting resources)

« Virtual memory and introduce more of the paging concept
and hardware support needed for paging.

« And take a look at how we typically divide up virtual
memory between the OS (i.e., Kernel) and User Programs

A brief side note on fragmentation

* There are essentially two types of fragmentation

— Internal Fragmentation: This is where a block of
memory is being under utilized. For example a process
of size 5000 bytes would need 2 4KB pages of memory.
So the system winds up allocating 8192 bytes of
memory The program really only uses 5000 bytes so
we waste 3092 bytes.

— External Fragmentation: There is where memory has
been broken up into small unallocated pieces whose
sum might make a nice usable piece but because the
pieces are not adjacent in the Virtual Address Space
they cannot be combined.

Goals

— make allocation
and swapping
easier

Make all chunks of

memory the same

size

— call each chunk a
“PAGE”

— example page
sizes are 512
bytes, 1K, 4K,
8K, etc

— pages have been
getting bigger
with time

Paging

Virtual Address

Page Table

Page
Table
Base
Register

=
physical
address

Each entry
in the page
table is a
“Page Table
Entry”

CSE 451 Introduction to Operating Systems




April 25, 2001

An Example

Pages are 4096 bytes long
— this says that bottom 12 bits of the VA is the offset
PTBR contains 32768

— this says that the first page table entry for this process ig
at physical memory location 32768

Virtual address is 5000

— this says “page 2, offset (5000-4096) = 904"
Physical memory location 32772 contains 8192
— this says that each PTE is 4 bytes

— and that the second page of this process’s address spade
can be found at memory location 8192.

So, we add 904 to 8192 and we get the real data!

What does a PTE contain?

1 1 1 1-2 about 20

l M-bit " R-bit H V-bit l Protection bits “ Page Frame Number l
The Modify bit says whether or not the page has been
written.

— itis updated each time a WRITE to the page occurs.
The Reference bit says whether or not the page has been
touched

— itis updated each time a READ or a WRITE occurs
The V bit says whether or not the PTE can be used

— itis checked each time the virtual address is used
The Protection bits say what operations are allowed on this
page

— READ, WRITE, EXECUTE
The Page Frame Number says where in memory is the pag

Evaluating Paging
Easy to allocate memory
— memory comes from a free list of fixed size chunks.
— to find a new page, get anything off the free list.
— external fragmentation not a problem
easy to swap out pieces of a program
— since all pieces are the same size.
— use valid bit to detect references to swapped pages
— pages are a nice multiple of the disk block size.
Can still have internal fragmentation
Table space can become a serious problem
— especially bad with small pages
« eg, with a 32bit address space and 4k size pages,
that's Z°pages or that many ptes which is a lot!
Memory reference overhead can be high
— 2 refs for every one

Segmentation and Paging
at the Same Time

Provide for two levels of mapping

Use segments to contain logically related things

— code, data, stack

— can vary in size but are generally large.

Use pages to describe components of the segments

— makes segments easy to manage and can swap memor|
between segments.

— need to allocate page table entries only for those pieces
of the segments that have themselves been allocated.

Segments that are shared can be represented with shared

page tables for the segments themselves.

CSE 451 Introduction to Operating Systems




April 25, 2001

Lookups
¢ Each memory reference can be 3
— assuming no fault
Real Memory « Can exploit locality to improve lookup strategy
— a process is likely to use only a few pages at a time
« Use Translation Loolside buffer to eploit locality

— a TLB is a fast associative memory that keeps track of
recent translations.

/ ¢ The hardware searches the TLB on a memory reference

« On a TLB miss, either a hardware or software exception
can occur

— older machines reloaded the TLB in hardware

An Early Example -- IBM System 370

24 bit virtual address
4 bits 8 bits

simple bit\operation

S?%T)‘.Z”t — newer RISC machines tend to use software loaded
TLBs
Page Table « can have any structure you want for the page table

« fast handler computes and goes. Eg, the MIPS.

ATLB
Hard versus soft page faults « A small fully associative cache
« Each entry contains a tag and a rag Value
« Hard page faults are those page faults that require issuing value. )

read from secondary storage. — tags are virtual page numbers

— values are physical page table
entries.
* Problems include 2
— keeping the TLB consistent with

« Soft page faults are those page faults where the page is
already in main memory however the TLB and/or the PTE
has marked the page as invalid.

— Soft faults are used when Hardware support is not the PTE in main memory
available to handle TLB misses « valid and ref bits, for example
— Soft faults can also be used in implement certain page — keeping TLBs consistent on an
replacement algorithms. More to come. MP. Oxif1000
— quickly loading the TLB on a
miss.

« Hit rates are important.

CSE 451 Introduction to Operating Systems



April 25, 2001

Selecting a page size State of maintained by MM
. ) - : « MM usually maintains a list of physical pages according to
Small pages give you lots of flexibility but at a high cost. the following attributes (various implementations use
« Big pages are easy to manage, but not very flexible. slightly different lists)
¢ Issues include — Zeroed pages
— TLB coverage — Free pages
 product of page size and # entries — Standby pages
— internal fragmentation — Modified pages
« likely to use less of a big page — Modified No Write pages
— # page faults and prefetch effect — Bad pages
« small pages will force you to fault often + MM's goal is to use these pages on these lists to supply
— match to I/O bandwidth memory for both soft and hard page faults
« want one miss to bring in a lot of data since it will « MM can have a modified page writer process that goes
take a long time. around and flushes out dirty pages.
Address Spaces Next Time
* In modern systems the virtual address space is usually
divided into two main sections (one for user programs and « Work through a paging example to understand more of the
another for the OS) issues involved

« For example in Windows (not the 64bit version) the lower
2GB is used for the user programs and upper 2GB is
reserved for the OS

« The OS pages are protected and cannot be read while in
user mode

« Each process shares the same upper 2GB of Virtual
address, but each also has a different set of pages for its
user space

« This design has implications on communication between a
user program and the OS, and between user programs

CSE 451 Introduction to Operating Systems



