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Today

• How does the free page list get replenished?

• What do we do with dirty pages?

• Thrashing 

• What parts of the operating system always needs to be 
resident in physical memory?

• What about allocating memory in smaller units than a page

Memory Management Page States and Lists

• MM maintains a list of physical pages according to the 
following attributes (various implementations use slightly 
different lists)
– Zeroed pages
– Free pages
– Standby pages
– Modified pages
– Modified No Write pages
– Bad pages

• MM’s goal is to use these pages on these lists to supply 
memory to the system

Making free pages

• When a process exits it pages are freed

• When a process gets its “working set” reduced some pages 
are freed

• When a processes deallocates memory its pages are freed

• One special characteristic about “currently used” pages is 
that some are “clean” and some are “dirty”
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Dirty pages

• Dirty or modified pages need to be written out before the 
frame can be freed

• We can write out a dirty page just before the page is freed
– This minimizes the number of writes we need to do
– This also means that making a free page might take a 

while longer
• Or we can periodically write out dirty pages

– There can be a “modified page writer” process in the 
system that sweeps through writing out modified pages

– Picking when to write a page can be a problem, because 
writing too often is bad

Thrashing

• Thrashing is when the system is so busy reading and 
writing page frames that the effective system throughput is 
getting close to zero.

• Overstressed systems exhibit this behavior

• Part of testing a commercial system is to load it up to 
capacity and fix what breaks

• Some techniques to avoid thrashing is to simply limit the 
number of processes that can exist at a given time.

– Other limits are possible and useful (opened files, 
logged on users, etc)

Paged and non paged memory

• Some data and code must always be in memory (also 
called resident)
– All of the kernel, all the time?

• Paged memory has a copy in backing store and can be 
discarded from main memory and brought back in with 
only a performance penalty

• Nonpaged memory for various reasons cannot be discarded 
and brought back in.
– Sometimes the code/data must always be resident to run 

the system (e.g., the code that does the actual backing 
store support)

– Sometimes the code/data is “pinned” in memory for a 
device driver to access for DMA purposes

– Sometimes code is pinned in for performance reasons

How much to page

• There is a chicken and egg problem of making sure that the 
code & data necessary to page-in non-resident data is itself 
in memory.

• My laptop running NT has 13MB of code and 28MB of 
data, but only 3MB of code and 4MB of data is 
permanently in memory.
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Sub page allocation

The basic allocation granularity for the system is a physical 
page.  So what does a system programmer do to get 
smaller allocations (e.g., a malloc of 32 bytes)?
– There needs to be a sub-page memory allocator used to 

allocate either paged of non-paged memory in the 
kernel.

• This is similar to user mode heap but with some additional 
requirements
– Paged versus non-paged

• Basically there needs to be an allocate and a free function.
– In NT this is called the kernel pool allocator

• Fragmentation is still an issue

Still to come

• File systems

• I/O systems

• Software File Caching

• Distributed systems

• Security and administration


